• 제목/요약/키워드: piston-rod

검색결과 86건 처리시간 0.028초

고속 공기압 실린더용 릴리프밸브형 쿠션기구의 특성 해석 (Analysis of Cushion Mechanism with Relief Valve for High-Speed Pneumatic Cylinders)

  • 김도태;장중걸
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.95-103
    • /
    • 2010
  • This paper presents a simulation model of a double-acting high-speed pneumatic cylinder with a relief valve type cushion mechanism. The model predicts piston motion, mass flow rate, pressure and temperature time histories of cushion chamber. Of interest here is to investigate the cushioning effect of varying the piston and piston-rod diameter, cushion ring diameter and length, and stoke in cushion mechanism. As a result, this cushion mechanism is found to be adequate under high-speed driving of pneumatic cylinders. The simulation model proposed here will be very useful to analyze the dynamic characteristics and to improve or design the better cushion mechanism in high-speed pneumatic cushion cylinders.

엔진 부품에 대한 피로 및 전동해석 (Fatigue and Vibration Analysis on Engine Parts)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석 (Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM)

  • ;양창조;김준호;김부기
    • 해양환경안전학회지
    • /
    • 제23권4호
    • /
    • pp.393-399
    • /
    • 2017
  • 왕복동식 압축기에서 피스톤과 커넥팅로드는 중요한 부분이다. 이러한 주요부에 기계적 부하가 과도하게 가해지면 해당 기부속이 손상될 수 있으며, 교체하기도 쉽지 않고 비용도 많이 든다. 따라서 내구성과 수명에 영향을 미치는 요인을 분석할 필요가 있다. 본 연구의 주요 목적은 피스톤과 커넥팅로드의 최대 응력 집중 위치를 확인하는 것이다. 이를 위해 설계된 공기압축기의 작업 공정의 동적계산을 기반으로 피스톤 및 커넥팅로드의 응력 분석을 수행하였다. 공기압축기의 피스톤과 커넥팅로드의 3 차원 모델을 따로 설계하고, 이러한 부품들의 유한요소 해석은 수치해석적인 근사해법을 사용하였다. 피스톤은 열 경계 조건 없이 크랭크 샤프트의 각도에 따라 압력 부하를 받는다. 시뮬레이션 결과는 피스톤과 커넥팅로드의 응력 집중 위치와 그 값을 예측하고 추정할 수 있다. 그 결과 크랭크 각도 $135^{\circ}$$225^{\circ}$에서 피스톤은 190MPa, 커넥팅로드는 123MPa 이상의 최대 등가응력이 나타났으며 이는 인장 항복강도 이하의 값이다. 또한, 커넥팅로드와 피스톤에 계산 된 안전 계수는 1보다 높게 나타났다. 더욱이, 이러한 결과는 왕복동 공기압축기 제작사에 피스톤 및 커넥팅로드를 설계함에 있어서 최적화를 위한 참고 자료로 활용 될 수 있다.

두 개의 EPPR 밸브가 적용된 정/역 가변형 사판식 액셜 피스톤 펌프 시스템 모델링 (System Modeling of a Bi-directional Outlet Variable Swash Plate Type Axial Piston Pump with Two EPPR Valves)

  • 김용길;김수태;함영복;윤소남;손호연
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.51-60
    • /
    • 2020
  • This study addresses the modeling of a bi-directional outlet variable swash plate type axial piston pump with two EPPR valves and an analysis of the response characteristics to the angle control of that pump. In this paper, the combination of the EPPR valve and double rod type piston is referred to as the EPPR regulator. The EPPR regulator is compact and inexpensive, and has good responsiveness. Under actual pump operating conditions, because of the various external conditions of the pump, inertia is applied to the swash plate, generating the tilting torque. Also, the tilting torque can delay or shorten the response characteristics of the regulator. So we validated them through the analysis using SimulationX and these results allow users to freely integrate the EPPR regulator into the desired system.

에너지 절약형 공기압 제어시스템 특성해석

  • 박재범;김동수;김형의;김기홍;염만오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.635-641
    • /
    • 1994
  • Recently, Improving the energy efficiency of a pneumatic system and reducing the consumption of compressed air were a concern of scholars at domestic and abroad. The using fields of a pneumatic system are widely used in factory automation of manufacturing line, chemical factories with explosiveness danger and petroleum industries etc. In particular, Pneumatic cylinder is applied to feeding work of workpiece, jig tools and press mechanism, reciprocation and rotary motion with rack and pinion. In this study, The experimental apparatus consisted to pneumatic cylinder, dual supply pressure regulator and solenoid valve. The dual supply pressure regulator connected to outlet port of solenoid valve. The supply pressure (4.5kgf/cm$\^$2/) of compressed air goes into the rodless chamber 1 to drive the pistion rod forward which is named working stage. The supply pressure(2kgf/cm$\^$2/) of compressed air goes into the rod chamber 2 to drive the piston rod backward which is named no-working stage. Accordingly, The research results of this study can be obtained to Energy-Saving Effects of the compressed air about 35%.

  • PDF

역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계 (Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems)

  • 함영복;김영;노종호;신석신;박종호
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구 (A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities)

  • 김청균;이병관
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

차량용 가스스프링의 최적설계에 관한 연구 (A Study on the Optimal Design of Automotive Gas Spring)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

씰리스 실린더 특성 해석에 관한 연구 (Characteristics Analysis of Sealless Cylinders)

  • 서현석;김동수;유찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF