• 제목/요약/키워드: piping stress

검색결과 272건 처리시간 0.029초

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

부생가스 연료배관의 설계변경에 따른 안전성 평가 (Safety Assessment of By-product Gas Piping after Design Change)

  • 윤기봉;응웬반장;위엔두안선;정성용;이주영;김지윤
    • 한국가스학회지
    • /
    • 제17권2호
    • /
    • pp.50-58
    • /
    • 2013
  • 공정플랜트에는 다양한 배관이 고압, 고온의 인화성, 폭발성 물질을 이송하고 있다. 잦은 설계 변경 및 증설 등으로 복잡한 형상으로 배관이 형성되어 있는 경우가 많으나 배관의 구조가 단순하여 실제 위험성에 비해 안전 관리가 부족한 경우가 많다. 본 연구에서는 국내 한 업체에서 부생가스를 연료로 사용하던 배관을 설계 변경하여 천연가스와 혼합하여 사용하도록 사례를 활용하여, 배관의 안전성을 평가 하는 방법을 예시하였다. 배관의 설계 변경 후 안전성을 ASME 기준에 따라 재평가하고, 배관의 주요 관리부위를 결정하는 방법을 제시하였다. 배관의 분기 및 루프 등이 다수 복잡하게 연결되어있는 가스혼합용 믹싱드럼 배관 시스템을 대상으로 해석하였다. 배관의 주요부위 응력 민감도를 이해하기 위해 배관의 지지대 구속조건 및 외부 온도를 변화시켜 가면서 이들의 영향을 연구하였다. 또한 부생가스가 포함하고 있는 수소가스에 의한 손상 가능성에 대해서도 논의하였다.

원전 기기 용접 잔류응력 평가 연구 고찰 (Investigation on the Studies for Welding Residual Stresses in Nuclear Components)

  • 김종성
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

상.하수도 배관재 용접부의 하중에 따른 피로강도 평가 (Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage)

  • 박경동;유형주
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

대형구조물의 효율적 3차원 용접잔류응력해석을 위한 새로운 이동 온도 프로파일 방법 (Moving Temperature Profile Method for Efficient Three-Dimensional Finite Element Welding Residual Stress Analysis for Large Structures)

  • 김철호;김재민;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.75-83
    • /
    • 2023
  • For three-dimensional finite element welding residual stress simulation, several methods are available. Two widely used methods are the moving heat source model using heat flux and the temperature boundary condition model using the temperature profile of the welded beads. However, each model has pros and cons in terms of calculation times and difficulties in determining welding parameters. In this paper, a new method using the moving temperature profile model is proposed to perform efficiently 3-D FE welding residual stress analysis for large structures. Comparison with existing experimental residual stress measurement data of two-pass welding pipe and SNL(Sandia National Laboratories) mock-up canister shows the accuracy and efficiency of the proposed method.

원자력 발전소 RCB 내 중요배관의 KEPIC 코드에 의한 내진 안전성 설계 (A Seismic Stability Design by the KEPIC Code of Main Pipe in Reactor Containment Building of a Nuclear Power Plant)

  • 이형복;이진규;강태인
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.233-238
    • /
    • 2011
  • In piping design of nuclear power plant facilities, the load stress according to self-weight is important for design values in test run(shutdown and starting). But sometimes it needs more studies, such as seismic analysis of an earthquake of power plant area and fatigue life and stress of thermal expansion and anchor displacement in operating run. In this paper, seismic evaluations were performed to nuclear piping system of Shin-Kori NO. 3&4 being built in Pusan lately. Results of seismic analysis are evaluated on basis of KEPIC MN code. The structural integrity on RCB piping system was proved.

산업플랜트 배관계통의 해석 및 설계시스템 개발에 관한 연구 (A Study on the Development of the Computer Aided Analysis and Design System of the riping Networks of Industrial Plants)

  • 유종열;최창근;이종원;오재화
    • 대한설비공학회지:설비저널
    • /
    • 제6권4호
    • /
    • pp.262-266
    • /
    • 1977
  • A new computer system for the stress analysis and design of piping network has been devlo-ped in this study. For the stress analysis, the system utilizes the finite element technique in which the frontal technique is used as the equation solver. The element library of the system has (1) Pipe Element (2) Beam Element, (3) Hanger Element and (4) Spring Element which should be sufficient to model the entire piping system including flexible supports, joints, piping rack and hangers. Based on the element stresses, code check has been performed and the safety factor for each element is calculated.

  • PDF

프로세스 배관계의 3차원 유동해석 (3-D Flow Simulation of Process Piping System)

  • 양희천;박상규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.469-473
    • /
    • 2001
  • It is very important that piping system shall meet the optimum design requirement as predicted in designing system. If the piping system proved not to meet the requirement in commission it shall be redesigned and corrected till the required capacity is satisfied. which costs much expense. The objective of this study is to understand steady 3-dimensional flow phenomena in a process piping system numerically. 3-dimensional numerical simulations with standard $k-{\epsilon}$ model were carried out by using ALGOR code for three cases of Reynolds number. 2500, 3500 and 4500, based on inlet pipe diameter and three cases of inflow air temperature, $20^{\circ}C,\;50^{\circ}C$ and $100^{\circ}C$.

  • PDF

원전 배관의 LBB 개념 적용을 위한 간략 설계기법 개발 (Development of a Simplified Design Method for LBB Application to Nuclear Piping)

  • 허남수;이철형;김영진;석창성;표창률
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.32-41
    • /
    • 1999
  • If the Leak-Before-Break (LBB) concept is applicable to the nuclear piping design, it is not necessary to consider the dynamic effect due to pipe rupture. Therefore, the construction cost can be significantly reduced by eliminating unnecessary pipe whip restraints and jet impingement devices. The objective of this paper is to develop the Piping Evaluation Diagram (PED) for efficient application of LBB concept to piping system at an initial piping design stage. For this purpose, the 3-D finite element analyses were performed to evaluate the crack stability. And the stress-strain curve based on the pipe material tests were used to calculate the detectable leakage crack length. Finally, the present PED which was composed as a function of NOP load and allowable SSE load, was developed for an application of LBB concept to the safety injection and shutdown cooling line in Korean Next Generation Reactor (KNGR).

  • PDF