• Title/Summary/Keyword: piping inspection

Search Result 130, Processing Time 0.019 seconds

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

IMPROVED POD METHODOLOGY USING MONTE CARLO SIMULATION

  • Park, Ik-Keun;Yoon, Jong-Hak;Ro, Sing-Nam;Seo, Seong-Won;Namkoong, Chai-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.73-78
    • /
    • 2003
  • Ultrasonic measurement is one of important technologies in the lift-time maintenance of nuclear poler plant. Ultrasonic inspection system is consisted of the operator, equipment and procedure. The reliability of ultrasonic inspection system is affected by its ability. The performance demonstration round robin was conducted to quantify the capability of ultrasonic inspection for in-service. The small number of teams who employed procedures that met or exceeded ASME Sec. XI Code requirements detected the piping of nuclear power plant with various cracks to evaluate the capability of detection and sizing. In this paper, the statistical reliability assessment of ultrasonic nondestructive inspection data using Monte Carlo simulation is presented. The results of the probability of detection (POD) analysis using Monte Carlo simulation are compared to these of logistic probability model. In these results, Monte Carlo simulation was found to be very useful to the reliability assessment f3r the small hit/miss data sets.

  • PDF

The Experience of Non-destructive Examination of Equipments Welds in Nuclear Power Plant (원자력발전소 설비 용접부 비파괴검사 참여 경험)

  • 김영호;김형남;남민우;김용식;양승한
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.118-120
    • /
    • 2004
  • The non-destructive examinations for Yonggwang unit 6 was conducted in four different fields, these are 1)all non-destructive inspections for components, piping weldments and structures, 2)automated ultrasonic inspection for pressure vessels weldments. As the results, there were no big indications, and all indications detected during inspection were evaluated as the metallurgical and geometrical non-reinvent indications form weldments. Especially for the weldment of pipes, PD(Performance Demonstration) was applied as a UT inspection method according to 1995 edition of ASME code Sex. XI, this resulted in improvement of the reliability of UT inspection.

  • PDF

Tomographic Imaging for Structural Health Monitoring Inspection of Containment Liner Plates using Guided Ultrasonic (유도초음파를 활용한 격납건물 라이너 플레이트 상시감시 모니터링 검사를 위한 토모그래피 영상화)

  • Park, Junpil;Cho, Younho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Large-scale industrial facility structures continue to deteriorate due to the effects of operating and environmental conditions. The problems of these industrial facilities are potentially causing economic losses, environmental pollution, casualties, and national losses. Accordingly, in order to prevent disaster accidents of large structures in advance, the necessity of diagnosing structures using non-destructive inspection techniques is being highlighted. The defect occurrence, location and defect type of the structure are important parameters for predicting the remaining life of the structure, so continuous defect observation is very important. Recently, many researchers have been actively researching real-time monitoring technology to solve these problems. Structure Health Monitoring Inspection is a technology that can identify and respond to the occurrence of defects in real time, but there is a limit to check the degree of defects and the direction of growth of defects. In order to compensate for the shortcomings of these technologies, the importance of defect imaging techniques is emerging, and in order to find defects in large structures, a method of inspecting a wide range using guided ultrasonic is effective. The work presented here introduces a calculation for the shape factor for evaluation of the damaged area, as well as a variable β parameter technique to correct a damaged shape. Also, we perform research in modeling simulation and an experiment for comparison with a suggested inspection method and verify its validity. The curved structure image obtained by the advanced RAPID algorithm showed a good match between the defect area and the shape.

Current Status of an International Co-Operative Research Program, PARTRIDGE (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE) (국제공동연구 PARTRIDGE를 통한 확률론적 건전성 평가 기술 개발 현황)

  • Kim, Sun Hye;Park, Jung Soon;Kim, Jin Su;Lee, Jin Ho;Yun, Eun Sub;Yang, Jun Seog;Lee, Jae Gon;Park, Hong Sun;Oh, Young Jin;Kang, Sun Yeh;Yoon, Ki Seok;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 2013
  • A probabilistic assessment code, PRO-LOCA ver. 3.7 which was developed in an international co-operative research program, PARTRIDGE was evaluated by conducting sensitivity analysis. The effect of some variables such as simulation methods (adaptive sampling, iteration numbers, weld residual stress model), crack features(Poisson's arrival rate, maximum numbers of cracks, initial flaw size, fabrication flaws), operating and loading conditions(temperature, primary bending stress, earthquake strength and frequency), and inspection model(inspection intervals, detectable leak rate) on the failure probabilities of a surge line nozzle was investigated. The results of sensitivity analysis shows the remaining problems of the PRO-LOCA code such as the instability of adaptive sampling and unexpected trend of failure probabilities at an early stage.

Manufacturing characteristic of major components for prototype SFR (소듐냉각고속로(원형로) 주요기기 제작 특성)

  • Choi, Han Kwang;Lee, Jung Gon;Jun, Il Jung;Kim, Se-Hun;Lee, Jeong Kyu;Kim, Yong Su;Kim, Chul;Ahn, Dong Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.115-125
    • /
    • 2016
  • The prototype SFR has currently been under design by KAERI. The size of its major components is much larger than that of APR1400 and high temperature materials are applied for it. The increased size of components and those specific materials effect on material procurement, manufacturing process and fabrication facilities. The manufacturing methods are studied for Reactor Vessel/Guard Vessel, Control Rod Drive Mechanism, Heat Exchanger, Primary Pump, Reactor Vessel Internals, Steam Generator and In-Vessel Transfer Machine. The proper manufacturing methods are suggested for each component including side forging technology for ultra large forgings of Reactor Vessel to minimize the weld seams on which In-service Inspection should be conducted.

Sipping Test Technology for Leak Detection of Fission Products from Spent Nuclear Fuel (사용후핵연료 핵분열생성물 누출탐상 Sipping 검사기술)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Young Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2020
  • When a damage occurs in the nuclear fuel burning in the reactor, fission products that should be in the nuclear fuel rod are released into the reactor coolant. In this case, sipping test, a series of non-destructive inspection methods, are used to find leakage in nuclear fuel assemblies during the power plant overhaul period. In addition, the sipping test is also used to check the integrity of the spent fuel for moving to an intermediate dry storage, which is carried out as the first step of nuclear decommissioning, . In this paper, the principle and characteristics of the sipping test are described. The structure of the sipping inspection equipment is largely divided into a suction device that collects fissile material emitted from a damaged assembly and an analysis device that analyzes their nuclides. In order to make good use of the sipping technology, the radioactive level behavior of the primary system coolant and major damage mechanisms in the event of nuclear fuel damage are also introduced. This will be a reference for selecting an appropriate sipping method when dismantling a nuclear power plant in the future.

Leakage-reduction Measures at a Joint between CPVC Piping for a Sprinkler System and a Pipe Expansion (스프링클러설비용 CPVC관과 신축배관 접속부분에서의 누수저감 대책에 관한 연구)

  • Lim, Chun-Ki;Lim, Yun-Tack;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.21-30
    • /
    • 2015
  • In this study, we try to suggest measures to reduce leakage at a joint between CPVC piping for a sprinkler system and a pipe expansion through reviews of domestic and foreign standards and related tests. The quality of the waterproof rubber packing material between a valve socket and pipe expansion nut was examined. In the leak test, the valve socket material over the expansion part of the metal pipe nut was found to use a metal part or a schlorinated polyvinyl chloride pipe nut part. In addition, the KS B 0221 standard for parallel pipe threads with threaded and thread inspection criteria and inspection standards in order to ensure an acceptable quality of valve socket, there is a need to amend the regulations to comply with the KS B 5223 (screw thread limit gauges parallel pipe threads). We do not have detailed standards for expansion piping nuts for waterproof rubber ring material, so we need to amend the relevant criteria for EPDM material to be used with excellent waterproofing, for which both NBR and EPDM are currently used.

Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld (원자력발전소 배관 용접부 위상배열 초음파검사 절차서 개발 및 기량검증)

  • Yoon, Byung-Sik;Yang, Seung-Han;Kim, Yong-Sik;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection.