• Title/Summary/Keyword: pipeline structure

Search Result 273, Processing Time 0.027 seconds

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

Simulation of Conductance Effects on Vacuum Characteristics of High Vacuum System for Semiconductor Processing (반도체공정 고진공시스템 진공특성에 대한 배기도관 컨덕턴스 영향 전산모사)

  • Kim, Hyung-Taek;Seo, Man-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.287-292
    • /
    • 2010
  • Effect of conductance factors on performance of vacuum system was simulated for optimum design of vacuum system. In this investigation, the feasibility of modeling mechanism for VacSim$^{Multi}$ simulator was proposed. Application specific design of vacuum system is required to meet the particular process conditions for various industrial implementations of vacuum equipments. Geometry and length, diameter of exhaust pipeline were modeled as simulation modeling variables for conductance effects. Series vacuum system was modeled and simulated with varied dimensions and structures of exhaust pipeline. Variation of pipeline diameter showed the more significant effects on vacuum characteristics than that of pipeline length variations. It was also observed that the aperture structure of pipeline had the superior vacuum characteristics among the modeled systems.

Reduction of Power Dissipation by Switching Activity Restriction in Pipeline datapaths (파이프라인 데이터경로에서의 스위칭 동작 제한을 통한 전력소모 축소)

  • 정현권;김진주;최명석;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.381-384
    • /
    • 1999
  • In this paper, we addressed the problem of reducing the switching activity in pipeline datapath and proposed a solution. clock-gating method is a kind of practical technique for reducing switching activity in finite state machine. But, in the case that the target gated function unit has a pipeline structure, there is some spurious switching activity on each stage register group. This occur in early stage of every function enable cycle. In this paper we proposed a method to solve this problem. This method generates the enable signal to each pipeline stage to gate the clock feeding register group. Experimental results showed effective reduction of dynamic powers in pipeline circuits.

  • PDF

Numerical Modeling of Soil-Reinforcement Interaction Under a Buried Pipeline (매설관 하부지반-보강재 상호작용의 수치모델 연구)

  • 손준익;정하익
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-135
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a buried pipeline subjected to differential settlement via a finite element modeling. The soil-reinforcement interaction helps to minimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and a pipeline. The analysis results are compared for both non-reinforced and reinforced cases to numerically evaluate the stress transfer mechanism and the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Internal Pipeline Exploration of an In-pipe Robot Using the Shadow of Pipe Fittings (배관요소 그림자를 이용한 배관로봇의 배관내부 탐사)

  • Lee, Jung-Sub;Lee, Dong-Hyuk;Roh, Se-Gon;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • In this paper, we introduce an internal pipeline exploration of an in-pipe robot, based on the landmark recognition system. The fittings of pipelines such as elbows and branches are used as the landmarks. The robot recognizes the landmarks with a vision system by using the shadows of the elements, which are generated by the specially designed illuminator on the robot. By using a simple image-processing, the robot can easily detect and distinguish these landmarks while recognizing the direction of the pipeline path. Simultaneously, all information for exploration is continuously recorded and used to reconstruct the map of the pipelines. The effectiveness of the proposed method is verified by real experiments using the in-pipe robot MRINSPECT V for moving inside of the miniature urban 8-inch gas pipeline structure.

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Reliability Estimation of Gas Pipelines Damaged by External Corrosion (외부부식에 의해 손상된 배관의 신뢰성평가)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.1-6
    • /
    • 2006
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damage caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of the pipeline structure. In this study, we estimate the allowable damage by comparing the ASTM B31G code to a modified theory considering diverse detailed corrosive forms. The ASTM B31 G code has been developed as the evaluation method for reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials. Furthermore, we suggest a method for estimating the expected life span of used pipelines by utilizing the reliability method based on major variables such as the depth and length of damage and the corrosion rate affecting the life expectancy of the pipelines.

SYSTEM ANALYSIS OF PIPELINE SOFTWARE - A CASE STUDY OF THE IMAGING SURVEY AT ESO

  • Kim, Young-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.403-416
    • /
    • 2003
  • There are common features, in both imaging surveys and image processing, between astronomical observations and remote sensing. Handling large amounts of data, in an easy and fast way, has become a common issue. Implementing pipeline software can be a solution to the problem, one which allows the processing of various kinds of data automatically. As a case study, the development of pipeline software for the EIS (European Southern Observatory Imaging Survey) is introduced. The EIS team has been conducting a sky survey to provide candidate targets to the 250 VLTs (Very Large Telescopes) observations. The survey data have been processed in a sequence of five major data corrections and reductions, i.e. preprocessing, flat fielding, photometric and astrometric corrections, source extraction, and coaddition. The processed data are eventually distributed to the users. In order to provide automatic processing of the vast volume of observed data, pipeline software has been developed. Because of the complexity of objects and different characteristic of each process, it was necessary to analyze the whole works of the EIS survey program. The overall tasks of the EIS are identified, and the scheme of the EIS pipeline software is defined. The system structure and the processes are presented, and in-depth flow charts are analyzed. During the analyses, it was revealed that handling the data flow and managing the database are important for the data processing. These analyses may also be applied to many other fields which require image processing.

Optimization of the Cloth Simulation Pipeline in Production of 3D Computer Animation (3D 컴퓨터 애니메이션 제작에서 Cloth Simulation 을 위한 제작파이프라인의 최적화)

  • Kwak, Dong-Min;Choi, Chul-Yong;Kim, Ki-Hong;Lee, Dong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.198-207
    • /
    • 2009
  • Recently, it was possible to represent the realistic clothes in the cloth simulation along with growth of 3D computer animation such as visual contents. In addition, because of the development of H/W(Hardware) and S/W(Software), the accessibility and participation are growing. However, in order to make the image of high quality of 3D animation, the optimized production pipeline was need. In this paper, in order to overcome the limitation of exiting 3D computer animation production pipeline, we propose the optimized production pipeline of the cloth simulation. Our production pipeline makes the optimization arrangement in consideration of the mobility in order to supplement the related structure limit toward each part of the existing pipeline. Moreover, by utilizing the dummy cloth the association nature with the animation part is solved and a performance is improved. The proposal pipeline actually introduced to the animation production. And then we can improve the performance production time and production manpower consumption. Consequently, our pipeline is guaranteed an optimized work by emphasizing a connection in the direct image production.