• Title/Summary/Keyword: pipeline leak detection

Search Result 41, Processing Time 0.023 seconds

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Fluid (배관-유체 연성진동을 이용한 누수지점 탐지 알고리듬 개발 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.798-803
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband sound from a leak location and this sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Time Delay Estimation for the Identification of Leak Location (시간지연 추정을 통한 누수위치 식별 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin;Kim, Chi-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.327-332
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than loom.

  • PDF

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

Development of leakage test facility for leak signal characteristic analysis in water pipeline (상수도관로 누수신호의 특성 분석을 위한 누수 실험시설 개발)

  • Park, Sanghyuk;Kwak, Philljae;Lee, Hyundong;Choi, Changho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.459-469
    • /
    • 2017
  • A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.

Development of TDR-based Water Leak Detection Sensor for Seawater Pipeline of Ship (시간영역반사계를 이용한 해수배관시스템의 누수 탐지용 센서 개발 연구)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1044-1053
    • /
    • 2022
  • Time domain reflectometry (TDR) is a diagnostic technique to evaluate the physical integrity of cable and finds application in leak detection and localization of piping system. In this study, a cable-shaped leak detection sensor was proposed using the TDR technique for monitoring leakage detection of ship's engine room seawater piping system. The cable sensor was developed using a twisted pair arrangement and wound by an absorbent material. The availability and performance of the sensor for leak detection and localization were evaluated on a lab-scale pipeline set up. The developed sensor was installed onto the pipes and flanges of the lab-scale set up and various TDR waveforms were acquired and analyzed according to the dif erent variables including the number of twists and sheath thickness. The result indicated that the twisted cable sensor was able to produce clear and smooth signal as compared to the TDR sensor with a parallel arrangement. The optimal number of twist was determined to be above 10 per the unit length. The optimal diameter of sheath thickness that results in the desired sensitivity was determined to be ranging from 80% up to 120% of the diameter of the conductor. The linear regression analysis for estimation of leak localization was carried out to estimate the location of the leakage, and the result was a determination coefficient of 0.9998, indicating a positive relationship with the actual leakage point. The proposed TDR based leak detection method appears to be an effective method for monitoring leakage of ship's seawater piping system.

Comparison of Window Functions for the Estimation of Leak Location for Underground Plastic Pipes (지하매설 플라스틱 배관의 누수지점 추정을 위한 창함수 비교 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.568-576
    • /
    • 2010
  • It is widely known that the leak locating of underground plastic pipelines is much more difficult than that of cast iron pipelines. The precision of the leak locating depends upon the speed of leak signal and the time delay estimation between the two sensors on the pipeline. In this paper, six different windowing filters are considered to improve the time delay estimation especially for the plastic pipelines. The time delay is usually estimated from the peak time of cross-correlation functions. The filtering windows including rectangle, Roth, Wiener, SCOT, PHAT and maximum likelihood are applied to derive the generalized cross-correlation function and compared each other. Experimental results for the actual plastic underground water supply pipeline show that the introduction of the filtering windows improved the precision of time delay estimation. Some window functions provide excellent leak locating capability for the plastic pipe of 98 m long, which is less than 1 % of the pipe lengths. Also a new probabilistic approach that the combinations of all results from each filtering window is suggested for the better leak locating.

Application of Transient and Frequency Analysis for Detecting Leakage of a Simple Pipeline (누수탐지를 위한 천이류와 주착수분석 적용 연구)

  • Kim, Hyung-Geun;Kim, Hyun-Soo;Lee, Mi-Hyun;Kim, Sang-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1065-1071
    • /
    • 2005
  • Many techniques of leak detection in pipeline systems have developed based on the propagation wave speeds and wave attenuation. In this paper, the transient analysis methodology is used for calculating the wave speed in the plastic pipe and a frequency analysis methodology is developed for leakage detection in water pipe networks. Data acquisition system for pressurized pipeline system were designed md fabricated to obtain high frequency pressure data. The methodology properly handles the unavoidable uncertainties in measurement and modeling error. Based on information from head pressure test data, it provides leak prediction capability from the transient events with leakage.

A Study on Pipeline Network Analysis for Predicting Pressure and Flow rate Transients in City-gas Supply Lines (도시가스 공급라인의 압력 및 유량변화 예측을 위한 배관망 해석 연구)

  • Nam, Jin-Hyun;Cho, Chan-Young;Jang, Sung-Pill;Lim, Si-Hyung;Shin, Dong-Hoon;Chung, Tae-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • The deviation of measured pressures in pipeline networks from normal or reference pressures is useful information for judging the operation of the pipeline networks. A cost-effective monitoring of pipeline networks including a leak detection capability can be realized when transient pressure variation is accurately predicted using measured conditions at supply- and demand-sides of the networks. In this study, a pipeline network analysis program was developed based on one-dimensional flow equations for compressible fluids. The validity of the present analysis was demonstrated by simulating the flow in a straight pipeline and comparing the results with the previously reported ones. Pressure and flow rate transients in several simple city-gas pipeline networks were also analyzed to show the usefulness of the developed program.

  • PDF

Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System

  • Kim Sang-Hyun;Yoo Wan-Suk;Oh Kwang-Jung;Hwang In-Sung;Oh Jeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.426-434
    • /
    • 2006
  • The impact of leakage was incorporated into the transfer functions of the complex head and discharge. The impedance transfer functions for the various leaking pipeline systems were also derived. Hydraulic transients could be efficiently analyzed by the developed method. The simulation of normalized pressure variation using the method of characteristics and the impulse response method shows good agreement to the condition of turbulent flow. The leak calibration could be performed by incorporation of the impulse response method with Genetic Algorithm (GA) and Harmony Search (HS). The objective functions for the leakage detection can be made using the pressure-head response at the valve, or the pressure-head or the flow response at a certain point of the pipeline located upstream from the valve. The proposed method is not constrained by the Courant number to control the numerical dissipation of the method of characteristics. The limitations associated with the discreteness of the pipeline system in the inverse transient analysis can be neglected in the proposed method.

Improved Estimation of Leak Location of Pipelines Using Frequency Band Variation (주파수 대역 변화를 이용한 배관의 누수지점 추정 개선 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.44-52
    • /
    • 2014
  • Leakage is an important factor to be considered for the management of underground water supply pipelines in a smart water grid system, especially if the pipelines are aged and buried under the pavement or various structures of a highly populated city. Because the exact detection of the location of such leaks in pipelines is essential for their efficient operation, a new methodology for leak location detection based on frequency band variation, windowing filters, and probability is proposed in this paper. Because the exact detection of the leak location depends on the precision of estimation of time delay between sensor signals due to leak noise, some window functions that offer weightings at significant frequencies are applied for calculating the improved cross-correlation function. Experimental results obtained by applying this methodology to an actual buried water supply pipeline, ~ 253.9 m long and made of cast iron, revealed that the approach of frequency band variation with those windows and probability offers better performance for leak location detection.