• Title/Summary/Keyword: pipe-spools

Search Result 4, Processing Time 0.018 seconds

Challenges and Future of Prefabricated Pipe Spools

  • Tadwalkar, Sahil;Lee, Yujin;Fischer, Martin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.678-685
    • /
    • 2022
  • Prefabrication is a construction technique that is increasingly being applied to different building components due to its many benefits, including higher quality and lower waste. Despite these advantages, there are challenges in execution of these components on projects, due to transportation logistics, skilled labor requirements, and project management techniques. This paper investigates the current landscape of prefabricated pipe spools and potential solutions for minimizing these challenges. The scope of this research includes a proposed workflow, to standardize implementation of these components. Semi-structured interviews were conducted with industry professionals to assess current industry practices and the validity of the proposed workflow. Findings of this paper indicate that greater integration between design, fabrication and transportation is required to minimize inefficiencies when implementing prefabricated pipe spools on projects.

  • PDF

A Study on Process Management Method of Offshore Plant Piping Material (해양플랜트 배관재 공정관리 방법에 관한 연구)

  • Park, JungGoo;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • In order to secure manufacturing competitiveness of offshore plants, piping process is one of the most important processes. This study is about the design of management system for piping materials manufacturing of the offshore plant. As a result of the study, we analyzed the system and algorithms needed for the processing of piping material products and designed the structure of the entire management system. We conducted a process analysis of the design, manufacturing and installation processes. And also we proposed a system structure to improve the various problems that have come out. We also proposed an algorithm to determine the delivery order of the pipe spools, and proposed a raw material management system for the manufacturing of the pipe spools. And we designed a manufacturing process management system to manage the risk of pipe materials delivery. And finally we proposed a data structure for the installation process management system. The data structures and algorithms were actually implemented, and applied the actual process data to verify the effect of the system.

Development Portable Pipe Spool Location-Confirm System Based UHF RFID (UHF RFID기반 이동형 파이프 스풀 위치 인식 시스템 개발)

  • Kim, Jinsuk;Shin, Yongtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.329-336
    • /
    • 2014
  • Pipe spool is the most important element of plant equipment in plant construction site. Currently, the plant construction site manage the pipe spool location and usage history by handwriting. Frequently, the pipe spool is moved to unpredictable places by field workers in many construction sites and in cases like this, the pipe stool is replaced with another similar pipe spool. Since it's hard to determine the exact location of some of the pipe spools, it takes unnecessary time and labour to find the missing pipe spools, which proves that stock management is not under control. The purpose of our system is to make the identification of real-time location of the field pipes possible by attaching UHF RFID tags to the pipe spool, which will be used to connect with UHF RFID reader and antenna on vehicles. A field test conducted by the proposed system resulted in the success rate of 98% and the missing 2% was recuperated by hands-on correction, which proved that stock management through the proposed method can be 100% effective. The proposed system is expected to reduce labour costs and make stock control of assets possible, as well as applicable to similar stock management environments.

"MODEL SPELL CHECKER" FOR PRIMITIVE-BASED AS-BUILT MODELING IN CONSTRUCTION

  • Kwon Soon-Wook;Frederic Bosche;Huh Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.163-171
    • /
    • 2004
  • This research investigates a Modeling Spell Checker that, similarly to Word Spell Checker for word processing software, would conform as-built 3D models to standard construction rules. The work is focused on the study of pipe-spools. Specifically pipe diameters and coplanarity are checked and corrected by the Modeling Spell Checker, and elbows are deduced and modeled to complete models. Experiments have been conducted by scanning scenes of increasing levels of complexity regarding the number of pipes, the types of elbows and the number of planes constituting pipe-spools. For building models of pipes from sensed data, a modeling method, developed at the University of Texas at Austin, that is based on the acquisition of sparse point clouds and the human ability to recognize geometric shapes has been used Results show that primitive-based models obtained after scanning construction sites can be corrected and even improved automatically, and, since such models are expected to be used as feedback control models for equipment operators, the higher modeling accuracy achieved with the Modeling Spell Checker could potentially increase the level of safety in construction. Result also show that some improvements are still needed especially regarding the co-planarity of pipes. In addition, results show that the modeling accuracy significantly depends on the primitive modeling method, and improvement of that method would positively impact the modeling spell checker.