• Title/Summary/Keyword: pipe-in-pipe

Search Result 5,793, Processing Time 0.028 seconds

Development of interception capacity equations according to grate inlet types (빗물받이 형상에 따른 차집량 산정식 개발)

  • Choi, Sung Yeul;Eom, Kwangho;Choi, Seungyong;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.851-861
    • /
    • 2016
  • Recently, natural disasters, which are hard to predict and prevent, are rapidly increasing due to climate change worldwide. Particularly the damage scale of urban areas is increasing because of local torrential rainfall. In urban areas, the rain water cannot flow to pipes well due to the high percentage of impervious areas by the indiscriminate development. As a result, the inundation damage is getting higher in urban areas. So we need to characterize the interception of the grate inlets to ensure good drainage in impervious areas. But Korean installation criteria of grate inlets does not reflect road and drainage sector characteristics so the grate inlets do not function properly in many areas. In this study, we suggest the interception capacity equations about grate inlets through hydraulic experiments in various conditions. Therefore, the interception capacity changes are analyzed according to bearing bar slopes of grate inlets, grate inlet sizes and shapes and connecting pipe numbers. Though this, we developed the interception capacity equations about domestic grate inlets.

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Effect of Light Quality on Appearance of Photobleaching leaves During the Cure of Burley Tobacco (Burley종 잎담배 건조시 광질이 백화엽 발생에 미치는 영향)

  • Bae, Seong-Kook;Lim, Hae-Geon;Kim, Yo-Tae;Yu, Ik-Sang;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • This experiment was designed to determine the effect of light quality on the appearance of photobleaching leaves during the cure of Burley Tobacco. The harvested and browned tobacco leaves were exposed to sunlight in pipe houses covered with 8 kinds of color vinyls (white, red, black, yellow, purple, orange, blue, green), and exposed to ultraviolet rays(20W x 3) and infrared rays (150W x 2) in curing chamber (1.2 x 1.2 x 1.2m). Photobleaching occured more at lower position leaf and after the leaves being browned when the curing was done in sunlight under a transparent vinyl. But photobleaching leaves were 5-6% of total cured leaves in sunlight under all kinds of color vinyl houses. It seems that photobleaching mainly induced by ultrabiolet rays of sunlight, and humidity too influenced. Yellow, orange and purple vinyl were durable and effective as shading material of color vinyls. since white and red vinyl tore easily in two monthes in strong sunlight and under black and blue vinyl houses curing period was longer than others.

  • PDF

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

Development of a warning algorithm and monitoring system for preventing condensation in utility tunnels (공동구 내 결로 예방을 위한 경고 알고리즘 및 모니터링 시스템 개발)

  • Sang-Il Choi;Jung-Hun Kim;Suk-Min Kong;Yoseph Byun;Seong-Won Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.551-561
    • /
    • 2024
  • Underground utility tunnels are spaces densely packed with various infrastructure facilities, such as power, telecommunications, and water supply and drainage systems, making internal environment management crucial. An investigation into accident cases and on-site demands in these tunnels revealed that while fires and floods are the most common types of incidents, the demand for real-time condensation prevention and response is frequent according to on-site managers. Condensation occurs due to the difference in humidity and temperature between the inside and outside of the tunnel. Frequent or prolonged condensation can lead to metal pipe corrosion, electrical failures, and reduced equipment lifespan. Therefore, this study developed a control algorithm and monitoring system to prevent condensation in underground utility tunnels. The proposed control algorithm estimates the likelihood of condensation in real-time based on the measured temperature and humidity and suggests appropriate responses for each stage to the managers. Finally, a practical condensation prevention monitoring system was built based on the developed algorithm, verifying the feasibility and applicability of this technology in the field.

Examine the Proper Operating Conditions in the Seawater Fluidized Bed filter System (해수 유동층 여과시스템의 적정 운용 조건)

  • Son Maeng-Hyun;Cho Kee-Chae;Jeon Im-Gi;Lim Han Kyu;Park Min-Woo
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Experiments were conducted to examine the differences in ammonia removal rates with the different filter media between sand and zeolite, the expanding rates between $50\%$ and $100\%$, the water temperatures between $15^{\circ}C$ and $25^{\circ}C$, and the ammonia loading rates between 2 mg/L and 5 mg/L in the seawater fluidized bed filters system (FBF). The 2.1 m high FBF (8.3 cm diameter) consisted of the clear acrylic for the upper half and a PVC pipe for the lower half, Sand and zeolite were used as the filter media in sizes of 0.5$\pm$0.1mm. Each biofilter contained 5.4 L of media. The ammonia removal rates of the biofilter were higher at the $25^{\circ}C$ water temperature than those of the biofilter at $15^{\circ}C$ water temperature, and higher at the $50\%$ expanding rate of filter media than those of the biofilter at $100\%$ expanding rate of filter media. Also, the ammonia removal rates of FBF were higher at 5 mg/L ammonia concentration than those of FBF at 2 mg/L ammonia concentration in rearing water. With these better conditions the ammonia removal rates of FBF per day are practically acceptable and ranged ken 80.6 to $210.6g/m^3$.

Parameter Analysis for Influence on the Scour Width around Submarine Pipelines in Waves (파랑하 해저관로 주변의 세굴폭에 영향을 주는 매개변수 분석)

  • Oh, Hyoun-Sik;Kim, Kyoung-Ho;Son, Kwang-Sik;Kim, Heung-Guk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.470-479
    • /
    • 2009
  • The local scour in waves can be thought of as very complex synthetic processes which is influenced by geology of bed material, bed flow in the sea and hydraulics condition. The most research until now be targeted at the scour depth and therefore the local scour width in waves has not been investigated as well. The size of wave or bottom velocity at the bed is direct cause of the local scour among lots of the scour effect factors, and the scour depth and width can be estimated through interrelationship analysis with scour area to use the dimensionless parameters including these such as Keulegan-Carpenter number, Ursell number etc. In this paper, to find out closely relation with the dimensionless parameters and scour width, performed an experiment with the variations of pipe diameters, wave heights and wave periods and then analyzed it. As the result, while Reynolds number and period parameter were seen to disperse local scour width largely, Shields number, KC number and Ursell number appeared good interrelationship. Specially, Shields number doesn't much affect the scour depth but has good relation for the scour width.