Examine the Proper Operating Conditions in the Seawater Fluidized Bed filter System

해수 유동층 여과시스템의 적정 운용 조건

  • Son Maeng-Hyun (Aquaculture Research Team, National Fisheries Research and Development Institute) ;
  • Cho Kee-Chae (Aquaculture Research Team, West Sea Fisheries Research Institute) ;
  • Jeon Im-Gi (Department of Aquaculture, Pukyong National University) ;
  • Lim Han Kyu (Aquaculture Research Team, National Fisheries Research and Development Institute) ;
  • Park Min-Woo (Aquaculture Research Team, National Fisheries Research and Development Institute)
  • 손맹현 (국립수산학원 양식관리팀) ;
  • 조기채 (서해수산연구소 양식연구팀) ;
  • 전임기 (부경대학교 양식학과) ;
  • 임한규 (국립수산학원 양식관리팀) ;
  • 박민우 (국립수산학원 양식관리팀)
  • Published : 2005.11.01

Abstract

Experiments were conducted to examine the differences in ammonia removal rates with the different filter media between sand and zeolite, the expanding rates between $50\%$ and $100\%$, the water temperatures between $15^{\circ}C$ and $25^{\circ}C$, and the ammonia loading rates between 2 mg/L and 5 mg/L in the seawater fluidized bed filters system (FBF). The 2.1 m high FBF (8.3 cm diameter) consisted of the clear acrylic for the upper half and a PVC pipe for the lower half, Sand and zeolite were used as the filter media in sizes of 0.5$\pm$0.1mm. Each biofilter contained 5.4 L of media. The ammonia removal rates of the biofilter were higher at the $25^{\circ}C$ water temperature than those of the biofilter at $15^{\circ}C$ water temperature, and higher at the $50\%$ expanding rate of filter media than those of the biofilter at $100\%$ expanding rate of filter media. Also, the ammonia removal rates of FBF were higher at 5 mg/L ammonia concentration than those of FBF at 2 mg/L ammonia concentration in rearing water. With these better conditions the ammonia removal rates of FBF per day are practically acceptable and ranged ken 80.6 to $210.6g/m^3$.

순환여과 사육시스템에서 유동층 여과조의 적정 유동조건을 구명하기 위하여 메디아 유동을($50\%,\;100\%$), 수은($15^{\circ}C,\;25^{\circ}C$) 및 암모니아 부하량(2 mg/L, 5 mg/L) 차이에 따른 암모니아 제거율을 조사하였다. 유동층 여과 시스템은 직경 8.3 cm, 높이는 2.0 m의 원통형으로 상부는 여과재료의 유동 비율의 조절이 용이하며 육안적으로 관찰이 가능한 아크릴관을 이용하였고 하부는 PVC 재질로 제작하였다. 유동층 여과 시스템의 여과 메디아로 직경 0.5$\pm$0.1mm 크기의 모래와 제올라이트 입재를 각각 5.4 L씩 여과조에 넣었다. 유동층 여과조의 암모니아 제거 능력은 암모니아 부하량에 따라 부하량이 적은 2 mg/L 실험구에 비해 부하량이 큰 5 mg/L실험구에서 암모니아 제거 효율이 높았고, 여과 메디아 별로는 제올라이트 메디아가 모래 메디아에 비해 암모니아 제거율이 높았다. 수은에 따른 유동층 여과 시스템의 암모니아제거 능력은 수은이 높은 $25^{\circ}C$ 가 수온이 낮은 $15^{\circ}C$에 비해 암모니아 제거율이 높았으며, 메디아의 유동율에 따른 유동층 여과조의 암모니아 제거율은 유동을 $50\%$가 유동을 $100\%$에 비해 높았다. 이상의 결과로부터 유동층 여과조의 운용조건이 수온 $25^{\circ}C$, 암모니아부하량이 5 mg/L이고 여과메디아의 유동율이 $50\%$일 때, 유동층 여과조의 일간 암모니아 제거량은 $80.6{\~}210.6g/m^3$으로 산정되었다.

Keywords

References

  1. APHA, 1989. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, 1532 pp
  2. Carmignani, G M. and J. P. Bennett, 1977. Rapid start-up of a biological filter in a closed aquaculture systems. Aquaculture, 11, 85-88 https://doi.org/10.1016/0044-8486(77)90157-0
  3. Forster, J. R. M., 1974. Studies on nitrification in marine biological filters. Aquaculture, 4, 387-397 https://doi.org/10.1016/0044-8486(74)90067-2
  4. Greiner, A. D. and M. B. Timmons, 1998. Evaluation of the nitrification rates of micro-bead and trickling filters in an intensive recirculating tilapia production facility. Aquacult. Eng., 18, 189-200 https://doi.org/10.1016/S0144-8609(98)00030-2
  5. Gujer, W. and M. Boiler, 1986. Design of nitrifying tertiary trickling filter based on theoretical concepts. Water Res., 20, 1353-1362 https://doi.org/10.1016/0043-1354(86)90133-8
  6. Hirayama, K., 1974. Water control by filtration in closed culture systems. Aquaculture, 4, 369-385 https://doi.org/10.1016/0044-8486(74)90066-0
  7. Jeon I. G, M. H. Son, J. Y. Jo and J. M. Lee, 1997. Ammonia removal capacities of several filter media in a sea-water recirculating aquaculture system. J. Aquacult., 10, 261-271
  8. Kikuchi K., S. Takeda, H. Honda and M. Kiyono, 1992. Nitrogen excretion of juvenile and young Japanese flounder. Nippon Suisan Gakkaishi, 58, 2329-2333 https://doi.org/10.2331/suisan.58.2329
  9. Lee, B. H., 2002. Efficiency Improvement of recirculating aquaculture system by using fluidizid bed reactor. Ministry of Maritime Affairs and Fisheries, 196 pp
  10. Nijhof, M. and J. Bovendeur, 1990. Fixed film nitrification characteristics in sea-water recirculation fish culture system. Aquaculture, 87, 133-143 https://doi.org/10.1016/0044-8486(90)90270-W
  11. Nijhof, M. and A. Klapwijk, 1995. Diffusional transport mechanisms and biofilm nitrification characteristics influencing nitrite levels in nitrifying trickling filters effluents. Water Res., 29, 2287-2292 https://doi.org/10.1016/0043-1354(95)00061-O
  12. Simonel, I. S., D. B. Gregory, J. W. Barnaby and L. B. Brian, 2002. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium. Aquacult. Eng., 26, 41-59 https://doi.org/10.1016/S0144-8609(02)00003-1
  13. Summerfelt, S. T. and J. L. Cleasby, 1996. A review of hydraulics in fluidized sand bed biological filters. Trans. ASAE, 39, 1161-1173 https://doi.org/10.13031/2013.27608
  14. Summerfelt, S. T. and E. M. Wade, 1997. Recent advances in water treatment processes to intensify fish production in large recirculating systems, (in) Timmons, M.B., Losordo. T. (ed.), Proceedings of the Aquacultural Engineering Society Technical Sessions at the Fourth International Symposium on Tilapia in Aquaculture, 9 Nov-12 Nov 1997, Northeast Regional Agricultural Engineering Service, Orlando, Florida, pp. 350-367
  15. Son, M. H., I. G Jeon, K. C. Cho and K. S. Kim, 2000. Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor. J. Korean Fish. Soc., 33, 367-372
  16. Son, M. H. and I. G Jeon, 2001. Acclimation period of rotating biological contactor filtering system. Bulletin of National Fisheries Research and Development Institute, 59, 32-37
  17. Teresa, K. N, B. T. Michel, D. M. Carlo and M. T. Scott, 2000. Biofilm characteristics as affected by sand size and location in fluidized bed vessels. Aquacult. Eng., 22, 213-224 https://doi.org/10.1016/S0144-8609(00)00040-6
  18. Timmons, M. B. and S. T. Summerfelt, 1998. Application of fluidized-sand biofilters to aquaculture. (in) Proceeding of the Second International Coference on Recirculating Aquaculture, (ed.) G S. Libey and M. B. Timmons, Roanoke, Virginia, pp. 342-354