• Title/Summary/Keyword: pipe welding

Search Result 327, Processing Time 0.078 seconds

Experimental Evaluation of Reserve Capacities for Connection Details between Steel Pipe Pile and Concrete Footing of Type-B (Type-B방식의 강관말뚝과 확대기초 연결부 상세에 따른 보유내력의 실험적 평가)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kwon, Yong-Kil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.183-192
    • /
    • 2008
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the korea highway bridge code, type-B method is prevalent. In this study, vertical, lateral, and tension loading test are done for two types of type B connection to review stress concentration, formation and behavior of imaginary RC column in the footing. Welding type and hook type as the connection method are considered in this study. Test results show that welding type have the more reserve capacity than hook type and the specimens connected by the welding type behave as the imaginary RC column in the footing. However, the specimens connected by the hook type did not behave as the imaginary RC column in the footing but behave as the hinge.

Study on Path Generation for Laser Welding Robot (레이저 용접 로봇의 경로 생성에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Park, Kyoung-Taik
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2010
  • Robot path generation and laser welding technology for manufacturing automotive body are studied. Laser welding and industrial robot systems are used with the robot based laser welding system. The laser system used in this study is 1.6kW Fiber laser, while the robot system is 6 axes Industrial robot (payload: 130kg). The robot based laser welding system is equipped with laser scanner system for remote laser welding. The laser source, robot and laser scanner system are used to increase the processing speed and to improve the process efficiency. The welding joints of steel plate are butt and lapped joints. The quality test of the laser welding are through the observation the shape of bead on plate and cross-section of welding part. The 3 dimensional laser welding for non-linear pipe welding line is performed. This paper introduces the robot based laser welding system to resolve the limited welding speed and accuracy of the conventional spot welding system.

  • PDF

A Stress Analysis on the Split-sleeve of Quick Pipe Coupling (파이프 신속결합장치 틈-슬리브에 미치는 응력분포 연구)

  • Pyo, Jin-Soo;Kang, Jin-Woo;Choi, Kwang-Suk;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.502-505
    • /
    • 2008
  • Due to continuous difficulty of human power supply, it is necessary to develop an equipment which is good to saving cost and time at a construction site. A quick pipe coupling method is the kind of mechanical joint system using split-sleeve and sealing-pad at pipe groove without welding. In hence, it provides restrained pipe joint which is simple, safe, and dependable without environmental pollutions. It is more useful scheme than the other ones. The purpose of this study is to find out the main design factors and the optimum shape of split-sleeve. The stress analyses were carried out under various shapes of pipe groove configuration, materials and internal pressures with a commercial software, ANSYS workbench which uses FEM(finite element method). Results are graphically depicted with various parameters.

  • PDF

Study on CAD/CAM Interfacing for Robot based Laser Welding (로봇 레이저용접을 위한 캐드캠 인터페이싱에 관한 연구)

  • Gang, Hui-Sin;Seo, Jeong;Kim, Jeong-O;Park, Gyeong-Taek;Jo, Taek-Dong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.67-69
    • /
    • 2007
  • Laser welding technology for automobile body is studied. Laser system, robot and seam tracking system are used for 3D laser welding system. The laser system is used 4kW Nd:YAG laser(HL4006D) of Trumpf and the robot system is used IRB6400R of ABB. The seam tracking system is SMRT-20LS of ServoRobot. The welding joints of steel plate are butt and lap joint. The 3 dimensional laser welding for non-linear pipe welding line is performed.

  • PDF

The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines

  • Kim, Y.P.;Kim, W.S.;Bang, I.W.;Oh, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.36-41
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

A Study on Adaptive Control to Fill Weld Groove by Using Multi-Torches in SAW (SAW 용접시 다중 토치를 이용한 용접부 적응제어에 관한 연구)

  • 문형순;정문영;배강열
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.90-99
    • /
    • 1999
  • Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve a reliable weld bead appearance, automatic seam tracking and adaptive control to fill the groove are urgently needed. For the seam tracking in welding processes, the vision sensors have been successfully applied. However, the adaptive filling control of the multi-torches system for the appropriate welded area has not been implemented in the area of SAW(submerged arc welding) by now. The term adaptive control is often used to describe recent advances in welding process control by strictly this only applies to a system which is able to cope with dynamic changes in system performance. In welding applications, the term adaptive control may not imply the conventional control theory definition but may be used in the more descriptive sense to explain the need for the process to adapt to the changing welding conditions. This paper proposed various types of methodologies for obtaining a good bead appearance based on multi-torches welding system with the vision system in SAW. The methodologies for adaptive filling control used welding current/voltage, arc voltage/welding current/wire feed speed combination and welding speed by using vision sensor. It was shown that the algorithm for welding current/voltage combination and welding speed revealed sound weld bead appearance compared with that of voltage/current combination.

  • PDF

Diagnosis and Monitoring of Socket Welded Pipe Damaged by Bending Fatigue Using Acoustic Emission Technique (음향방출법을 이용한 굽힘피로 손상된 소켓용접배관의 진단 및 감시)

  • Kim, C.S.;Oh, S.W.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2008
  • High cycle bending fatigue of socket welded small bore pipe was characterized, and also the fatigue crack initiation of small bore pipe was monitored in situ by the acoustic emission (AE) technique. The STS 316L stainless steel specimens were prepared by gas tungsten arc welding (GTAW) process having the artificial defect (i.e., lack of penetration) and defect free at the root. The fatigue failure was occurred at the loc for high stress and root for relatively low stress. The crack initiation cycles ($N_i$) was defined to the abrupt increase in AE counts during the fatigue test, and then the cracks were observed by the radiographic test and electron microscope before and after the fatigue crack initiation cycles. The socket welded pipe damaged by bending fatigue was studied regarding the welding defect, failure mode, and crack initiation cycles for the diagnosis and monitoring.