• Title/Summary/Keyword: pipe pile

Search Result 232, Processing Time 0.032 seconds

Design and Construction Problems of Semi-Shield Method (SEMI-SHIELD 공법의 설계 및 시공상 문제점)

  • Kim, Jong-In;Jung, Sung-Nam;Park, Yeong-Geon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

Effect of aeration on the physicochemical characteristics of livestock feces compost during composting period (퇴비화과정 중 공기공급 여부가 가축분뇨 퇴비의 물리화학적 특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Kang, Ho;Kim, Tai-ll;Park, Chi-Ho;Yang, Chang-Buem
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.57-65
    • /
    • 2003
  • Livestock farming is one of several industries that have faced criticism because of its impact on the water quality, soil contamination and air pollution. The livestock feces can cause some environmental problems. The best way to treat the feces is to recycle the manure as an organic fertilizer after fermentation or composting. This study was carried out to investigate the characteristics of composting of manure in several composting conditions. The variations of physicochemical characteristics of each compost piles containing different level of air volume were analyzed throughout the composting period. In this study, pigs manure compost piles mixed with saw dust were composted in 110L of laboratory scale plastic vessels and $1.5m^3$ of small cubic wooden composting vessels for 60days. The compost piles were ventilated continuously with air pump throughout the composting duration. The air volume ventilated into the piles was regulated by chock valve attached to the inlet pipe. The ventilation level was adjusted by 20, 50, 100, 150 and $200L/m^3/mim$, respectively. The highest temperature of the compost increased to $72^{\circ}C$ during composting period. After 20days from beginning of fermentation, concentrations of $H_2S$, $CH_3SH$, DMS and DMDS generated from compost piles were 29, 16, 6 and 5ppb in blow in state compost pile, conversely, in blow out state compost pile, the parameters were 32, 24, 15 and 14ppb, respectively.

  • PDF

Verticality 3D Monitoring System for the Large Circular Steel Pipe (대형 원형강관 수직도 모니터링을 위한 3D 모니터링 시스템)

  • Koo, Sungmin;Park, Haeyoung;Oh, Myounghak;Baek, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.870-877
    • /
    • 2020
  • A suction bucket foundation, especially useful at depths of more than 20m, is a method of construction. The method first places an empty upturned bucket at the target site. Then, the bucket is installed by sucking water or air into it to create negative pressure. For stability, it is crucial to secure the verticality of the bucket. However, inclination by the bucket may occur due to sea-bottom conditions. In general, a repeated intrusion-pulling method is used for securing verticality. However, it takes a long time to complete the job. In this paper, we propose a real-time suction bucket verticality monitoring system. Specifically, the system consists of a sensor unit that collects raw verticality data, a controller that processes the data and wirelessly transmits the information, and a display unit that shows verticality information of a circular steel pipe. The system is implemented using an inclination sensor and an embedded controller. Experimental results show that the proposed system can efficiently measure roll/pitch information with a 0.028% margin of error. Furthermore, we show that the system properly operates in a suction bucket-based model experiment.

Development of DHLT Joint for Vertical Cutoff Walls in Offshore Waste Landfill Site (해상처분장 연직차수공을 위한 DHLT 이음부의 개발)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Dongsoo;Chae, Kwang-Seok;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.43-56
    • /
    • 2018
  • Vertical cutoff walls such as steel pipe sheet piles (SPSPs) have been commonly applied for the construction of the offshore waste landfill site. Because the SPSPs are sequentially installed by connecting their joints to those of adjacent piles, their mechanical stability should be ensured against the inherent external forces on the sea. The objective of this study is to evaluate the structural performances of the newly developed types of SPSP joint compared with those of other joint types. The problems of the traditional SPSP joints are investigated, and an advanced joint shape of SPSP, which is named double H with L-T (DHLT) joint, are designed for improving the constructability and maintenance. Full-scale models of the DHLT joint are manufactured, and then its joint areas are filled with grout material. After 28 days of curing time, compressive and tensile strength tests were performed on the joint models and the test results were compared with those of the traditional joints. Experimental results show that the structural capacities of the DHLT joint models are lower than those of traditional joints due to the influence of grout and steel members. In the cases of the compressive strength test, especially, bending occurs on steel H-beam with no distinct cracks in grout due to the asymmetrical structure of joint which has no reaction force. This study shows that the performance of the SPSP joint can be improved by considering the influence factors on the structural capacities estimated by the experimental tests.

Aging Deterioration for Electric Power Transmission Tower on Offshore Through Periodic Inspections (해상송전철탑 구조물의 주기점검을 통한 경년열화 변화특성)

  • Lee, Ho Beom;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.25-33
    • /
    • 2012
  • In electric power transmission tower structures on offshore, implementation of life management using the event data of regular safety inspections for structural and material damages is strongly recommended. In this study, six tower structures in Sihwa Lake around Yeoungheung island were target bodies for the safety inspections. safety inspections for deterioration about each of six towers were performed about three items for steel member, five items for concrete foundation, and four items for steel-pipe pile in seawater and seawater itself. Safety inspections for steel members included the visual observations of surface appearances, the measurements of member thicknesses, and the checks of painting states. Also safety inspections for concrete foundations comprised the estimation of crack features, the evaluation of non-destructive compression strengths, and the measurements of neutralization depths and chlorides contents. For steel-pipe piles in seawater the inspections comprised the surveys of corrosion states in accordance with potential levels tests and anode tests, the analyses of photos taken on surfaces of the piles as well as the evaluation of seawater quality. A set of deterioration inspections was performed at the same positions around october of each year for three consecutive years. As a result in this study, Newly developed deterioration indexes have been applied profitably to maintain structural safety for electric power transmission towers by utilizing these event data systematically.

The behavior of a Cut Slope Stabilized by Use of Piles during Heavy Rain (억지말뚝으로 보강된 절개사면의 강우시 거동)

  • Han, Jung-Geun;Hong, Won-Pyo;Sin, Min-Ho
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 1996
  • An instrumentation system is designed to observe the behavior of slope soil and stabilizing piles during heavy rains. Inclinometers, standpipe piezometers and strain gages are installed into a cut slope reinforced by a row .of piles for an apartment. The horizontal deflection and bending stress developed on the piles can be measured, respectively, by the inclinometers and strain gages installed in piles, while the horizontal deformation of the slope soil can be measured by the inclinometer installed in the soil across the open space between piles. The groundwater level doss not grow so sensitively during heavy rain. The behavior of piles and slope is 서footed by the wetting front, since the driving force of slope increases with the weight of slope soil above the wetting front. The stabilizing piles and the slope soil show elastic behavior during heavy rain.

  • PDF

Quantitative assessment of reclamation-dams from the sea by using combined seismic methods (해안 매립지 탄성파 탐사)

  • Kim Jung-Yul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.85-100
    • /
    • 2002
  • This paper deals with a development of combined seismic methods, based on the application of Televiewer and seismic tomography, for the quantitative assessment of reclaimed body or dam at seashores in our county. The underground structure of reclaimed dam is very complex, mainly due to the unexpected exchange of rock fragments with the marine silty mud in conjunction with S.C.P. (Sand Compaction Pile) foundation, so that for several reasons only the use of Televiewer and seismic tomography for general application might not lead to a desirable resolution. Kinds of upgraded measuring and evaluation techniques for that are needed. For examples, a novel strategy for capturing the returning impulses from the outer side of casing plastic pipe is desired to be developed. For the tomograhy, one should be being more focussed on the study of raw data based on the wave propagation theory. In this paper, it is shown that such multidisciplinary approaches can be, by attempting to compare and jointly interpret the results from two methods, much efficient for understanding the reclaimed dam structure.

  • PDF

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.