• Title/Summary/Keyword: pipe cutting

Search Result 69, Processing Time 0.025 seconds

Simulation for Chlorine Residuals and Effect of Rechlorination in Drinking Water Distribution Systems of Suwon City (수원시 상수관망에서 잔류염소와 재염소주입의 효과 예측)

  • Kim, Kyung-Rok;Lee, Byong-Hi;Yoo, Ho Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.108-116
    • /
    • 2000
  • Chlorine is widely used as a disinfectant in drinking-water systems throughout the world. Chlorine residual was used as an indicator for prediction of water quality in water distribution systems. The variation of chlorine residual in drinking water distribution systems of Suwon city was simulated using EPANET. EPANET is a computerized simulation model which predicts the dynamic hydraulic and water quality behavior within a water distribution system operating over an extended time period. Sampling and analysis were performed to calibrated the computer model in 1999 (Aug. Summer). Water quality variables used in simulations are temperature, roughness coefficient, pipe diameter, pipe length, water demand, velocity and so on. Extended water residence time affected water quality due to the extended reaction time in some areas. All area showed the higher concentration of chlorine residual than 0.2mg/l(standard). So it can be concluded that any area in Suwon city is not in biological regrowth problem. Rechlorination turned out to be an useful method for uniform concentration of free chlorine residual in distribution system. The cost of disinfectant could be saved remarkably by cutting down the initial chlorine concentration to the level which guarantees minimum concentration (0.2mg/l) throughout the distribution system.

  • PDF

A Study on Forming of Silencer Case Using Virtual Tryout Method (가상 트라이아웃을 이용한 소음기 케이스 성형에 관한 연구)

  • Ko, Dae-Lim;Lee, Kyung-Sick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1167-1173
    • /
    • 2010
  • Forming of a silencer case was studied using a virtual tryout method. First, the appropriate blank shape was determined by cutting off the undeformed part of the rectangular blank. Then drawbeads were designed such that the formation of wrinkles on the shoulders and pipe connection can be prevented. Finally, the shape bead was designed such that fracture and formation of wrinkles around the pipe connection can be avoided. The prototype of the silencer case was manufactured in accordance with the conditions of the virtual tryout process. By comparing the formability of the prototype with the results of finite element analysis, it was found that the forming of the prototype agreed well with the results of analysis.

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

Numerical Analysis of Crossing Tunnel Under Railroad using Roof Panel Shield Method (Roof Panel Shield 공법을 이용한 철도지하횡단터널 굴착의 수치해석 연구)

  • Shin Eun-Chul;Kim Jung-Hyi;Jung Byung-Chul;Roh Jeong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.655-660
    • /
    • 2005
  • Recently, the crossing tunnel has been constructed to maintain the operation highway as well as railroad. The advantages of adopting RPS method in crossing tunnel construction are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing tunnel construction.

  • PDF

Analysis of Essential Function of Composite Sensor for the Ground Work of a Large Construction Project (대형 건설프로젝트 현장관리를 위한 복합센서의 필수기능 분석)

  • Cho, Nam-Seok;Kim, Chang-Won;Cho, Dae-Gu;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.39-40
    • /
    • 2012
  • Construction IT convergency proposes advanced management abilities of a construction project. Sensing data provided by various sensor technologies can be utilized for diverse management areas. This study analyzes required functions of sensors for implementing time, cost, safety and quality management, focusing on the ground works including excavation, pipe installation, retaining wall etc. Therefore, this study first generates essential management areas, analyzes cutting-edge sensor technologies appropriated for the areas, and finally proposes a matrix system that represents relationships between the management areas and sensor technologies, The proposed system is expected to reinforce construction management abilities by integrating sensor technologies.

  • PDF

A UBET Analysis of The Warm Forming Process of Magnetron Anode (마그네트론 양극의 온간성형 공정의 UBET해석)

  • 조관형;배원병;김영호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.204-208
    • /
    • 1995
  • Copper magnetron anode of a microwave-oven consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex process ; vane blanking, pipe cutting and sliver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique(UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the total power consumption with respect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

A Study on the Actual Condition for Air Respirators Using Air-breathing (공기호흡기용 압축공기 시스템에 대한 실태 연구)

  • Lee Chang-Woo;Lee Young-Jae;Hyun Seong-Ho;Seong Jae-Man;Song Yun-Suk;Choi Don-Muk;Yoon Myung-O
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.16-21
    • /
    • 2004
  • This paper has investigated influences of pollutants in air-breathing on the respirators and it by year of disused air respirators that fire fighter is using in domestic cutting done air respirators after collection observed state of cylinder material through instrumental analysis, and cut open pipe to confirm pollution degree of pipe from cylinder of air respirators to airline mask and confirm pollution availability. The metal surface inside the air respirators was corroded by moisture included in the compressed air. The material generated by corrosion is white powder of less then 100㎛, which is analyzed as aluminum hydroxide corroded by moisture. This aluminum hydroxide powder may get into the lung while one breathes in, and it is easy to be attached to the lung so it will cause a serious influences to human health. This study suggests that Korea should set out the standards for components and composition of breathing air as soon as possible.

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation (터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자)

  • Joo, Gun-Wook;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.