• Title/Summary/Keyword: pinion

Search Result 177, Processing Time 0.026 seconds

Rotordynamic Design of a Turbo-Chiller Compressor Rotor-Bearing System (터보냉동 압축기 로터-베어링 시스템의 동특성 설계)

  • 이안성;이동환;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.255-260
    • /
    • 1998
  • A detailed rotordynamic design analysis is performed with a turbo-chiller compressor rotor-bearing system. A pinion is machined into a compressor shaft and the pinion is driven by a bull gear to a rated speed of 14,600 rpm. Utilizing a finite element method each bearing loads are calculated considering various gear loadings as well as the rotor weight itself. A Partial bearing and a 3-Lobe bearing are designed as the compressor impeller out-board bearing and in-board bearing, respectively. Finally a complex rotordynamic analysis of the compressor rotor-bearing system is carried out to evaluate the system whirl natural frequencies, stabilities, and unbalance responses.

  • PDF

A Mathematical Model of a Power Steering System (파워 스티어링 시스템의 수학적 모델에 관한 연구)

  • 장봉춘;이성철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.39-47
    • /
    • 1997
  • The focus of this research is to set up and describe the mathematical derivation of an automobile power-assisted rack and pinion steering system dynamics. The mathematical model of the power steering system dynamics with a 5 DOF linear vehicle model will be used in the computer simulation and evaluated comparing with the experimental results. This model is flexible to accommodate different vehicles through simple parameter changes. The developed mathematical model will attempt to provide enhanced driver realism to a Systems Technology, Inc. driving SIMulator(STISIM).

  • PDF

Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set (핀 휠을 구비한 외륜형 선회베어링의 면압강도)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

Roller Track Gear System Design based on Roller Gear Mechanism (RGM 기반 롤러 트랙 기어 시스템 설계)

  • Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.194-198
    • /
    • 2014
  • In recent years, RGM(roller gear mechanism) systems, wherein one of the gears of a meshing gear pair is replaced with pins or rollers, have been reintroduced, which is a consequence of, and therefore a reflection of, the rapid advances made in manufacturing technology. Three RTG(roller track gear) systems for arbitrary path transportation (e.g., L-, O-, U-, and S-shaped tracks) were constructed using two out of three RGM systems, namely, the CRP(cam rack pinion), CRG(cam ring gear), and RPG(roller pinion gear) systems, and are introduced in this paper. We also present three ways to prevent the intersection and non-contact phenomena at the teeth in the vicinity of the conversion point between two joined RGM systems.

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

Study on the Direct Steering System using Rack and Pinion for Ultra-Small Vehicles (랙 & 피니언 기어를 이용한 소형 자동차의 직접 조향 방식에 관한 연구)

  • Kim, Soon-Ho;Kang, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.127-134
    • /
    • 2002
  • This study present a direct steering system using rack and pinion for ultra-small vehicles. The traditional small vehicles for special use had the limitation of space by reason of short wheel tread. These vehicles has adopted a indirect steering system or a center arm system for steering. The disadvantages of these system were deterioration of gear efficiency and increase of parts. For direct-linkage to both knuckles, steering system is made up of out-side tie rods, tie-rod ends, and gear box. Thus, the proposed system has a minimum number of parts. The experimental results show a maximum efficiency at minimum steering angle and a minimum clearance circle. These effects were accomplished by adopting a Ackerman-Jantaud theory.

Contact Fatigue Life for RRG System (BRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

The driving system design of walking robot which uses the automotive window motor (자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계)

  • YOUM, K.W.;HAM, S.H.;OH, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

Analysis of Bending and Rotation Phenomenon of Torsion Bar During Press-fitting Process for EPS Angle Sensors (EPS 각도센서용 토션 바의 압입공정의 휨과 회전현상 분석)

  • H. Lee;S.H. Lee;T.H. Jeon;I.-K. Chung
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.376-383
    • /
    • 2023
  • The torsion bar, which is a steering torque sensor, is mounted between the steering pinion and the input shaft in the IPA(input pinion assembly). Accurate torque measurement is important to improve the sense of operation, and the straightness of the torsion bar can affect torque measurement. In this study, the amount of bending was measured and the exact shape was analyzed regarding the bending phenomenon in the press-fitting process for torsion bars. The effect of alignment error was analyzed through finite element forming analysis. Process data analysis was conducted for the double-end press fit model. If there is an alignment error of about 10% of the serration tooth height, the indentation load is reduced by about 10%. If there is an alignment error, the torsion bar is rotated.

Study on the Economic Analysis for Developing Bukhansan Mountain Train (북한산 산악철도 개발의 경제성 분석 연구)

  • Lee, Jong-Seong;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4969-4976
    • /
    • 2015
  • South Korea has more than two-thirds of the land consists of mountainous terrain. It is necessary to enable the recycling of mountain tourism policy to allow people to use. This paper studied Bukhansan where there seems to have the most economical efficiency and effectiveness as an alternative means of transportation applying user'swillingnessto pay by age based upon the Study on Introduction Bukhansan Mountain Railway which was progressed as part of the balanced national development and railway promotion strategy. The Analyisis results are shown that cost-benefit ratio is Lim 0.73 and rack & pinion 0.8. The rack-and-pinion method is selected as an applicable alternative. If the new technologies are developed and made part of the construction of the tunnel route was judged as possible as an alternative way LIM