• Title/Summary/Keyword: pinch effect

Search Result 71, Processing Time 0.038 seconds

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Analgesic Action Mechanism of DA-5018, a New Capsaicin Derivative : Relationship to Opiate :Receptors and Prostanoids (새로운 캅사이신 유도체 DA-5018의 진통활성 기전연구: Opiate 수용체 및 :Prostanoid와의 상관성)

  • 손미원;손문호;배은주;김순희;김원배;양중의
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • DA-5018, a new capsaicin derivative, showed potent analgesic effect comparable to that of morphine in various experimental acute pain models. in this study, whether the analgesic mechanism of DA-5018 is related to opiate receptors or prostanoids was investigated. The affinity of DA-5018 for opiate receptor was determined by receptor binding assay. The Ki values of DA-5018 for nonspecific and specific $\mu$, $textsc{k}$, $\delta$-opiate receptor was 299$\pm$8.88, 735$\pm$215, 2930$\pm$ 163, 1550$\pm$813 nM, respectively and DA-5018 exhibited lower affinity than morphine. DA-5018 (10-"~3$\times$10-′M) inhibited electrically-evoked contractions of the guinea ply ileum and rat vas deferens, and these inhibition was not antagonized by naloxone(10 nM), an opiate receptor antagonist. Antagonism of analgesic effect of 7A-5018 by naloxone was examined by tail pinch test. Analgesic action of DA-5018(0.1 ~2 mg/kg, 5.c.) was not antagonized by naloxone(1 mg/rg, i.p.). These results indicate that pharmacological action of DA-5018 is not related with opiate receptor. Cyclooxygenase and 5-lipoxygenase activities in rat peritoneal neutrophil treated with A23187 and arachidonic acid were measured by radioimmunoassay. DA-5018 stimulated the cyclooxygenase activity and the concentration show-ing the two fold increase of activity was 124$\mu$M. DA-5018 slightly inhibited 5-lipoxygenase activity and these results together indicate that analgesic action of 3A-5018 is not mediated through inhibition of cyclooxy genase or lipoxygenase. These results suggest that the analgesic effect of DA-5018 is not due to blocking opiate receptor or to inhibiting the synthesis of prostanoids in the arachidonic acid metabolism pathway.

  • PDF

Dopaminergic Inhibition of Dorsal Horn Cell Activity in the Cat

  • Kim, Kyung-Chul;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.661-670
    • /
    • 1998
  • Dopamine has been generally known to exert antinociceptive action in behavioral pain test, such as tail flick and hot plate test, but there appears to be a great variance in the reports on the antinociceptive effect of dopamine depending on the dosage and route of drug administration and type of animal preparation. In the present study, the effects of dopamine on the responses of wide dynamic range (WDR) cells to mechanical, thermal and graded electrical stimuli were investigated, and the dopamine-induced changes in WDR cell responses were compared between animals with an intact spinal cord and the spinal animals. Spinal application of dopamine (1.3 & 2.6 mM) produced a dose-dependent inhibiton of WDR cell responses to afferent inputs, the pinch-induced or the C-fiber evoked responses being more strongly depressed than the brush-induced or the A-fiber evoked responses. The dopamine-induced inhibition was more pronounced in the spinal cat than in the cat with intact spinal cord. The responses of WDR cell to thermal stimulation were also strongly inhibited. Dopamine $D_2$ receptor antagonist, sulpiride, but not $D_1$ receptor antagonist, significantly blocked the inhibitory action of dopamine on the C-fiber and thermal responses of dorsal horn cells. These findings suggest that dopamine strongly suppresses the responses of WDR cells to afferent signals mainly through spinal dopamine $D_2$ receptors and that spinal dopaminergic processes are under the tonic inhibitory action of the descending supraspinal pathways.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

Groin flap and Neurovascular island flap for Reconstruction of the Thumb (서혜부 피판과 신경혈관 도서형 피판을 이용한 무지 재건술)

  • Jin, Jin-Woo;Kim, Chong-Kwan;Park, Chan-Wan;Lee, Young-Ho;Kwak, Wan-Sub;Jung, Sung-Weon
    • Archives of Reconstructive Microsurgery
    • /
    • v.14 no.2
    • /
    • pp.152-156
    • /
    • 2005
  • Purpose: We reconstructed the thumb with groin flap combined with secondary heterodigital neurovascular island flap and report our 6 cases. Materials and Methods: Between March 2003 and August 2004, 6 degloving thumbs or amputation of thumbs were reconstructed with groin flap combined with secondary heterodigital neurovascular island flap. There ware 4 men and 2 women, and mean age was 42.2 years. The following parameters were evaluated. Results: Recipient thumb was no limitation of apposition. but flexion contracture of interphalangeal joint was about 10 degree in two cases. Average grip power were 80% and average pinch power were 70% that of the normal thumb. The two point discrimination was average 10.5 mm and double sensibility in 2 cases. 2 patients have cold intolerance. Neuroma formation was not made. Cosmetic results as judged by patients were that 4 cases are good and 2 cases are fair. Conclusion: If massive skin defect after degloving thumb or amputation of thumb are present, we consider the numerous methods for reconstruction of thumb. This surgical procedure is good methods because of it's pliability, sensation, satisfactory functional results but major disadvantage are the staged operation and cosmetic effect of the absence of thumb nail.

  • PDF

Effect of Electrical Stimulation on Upper Extremity Function in Stroke Patients: A Systematic Review Based on Randomized Controlled Trials (뇌졸중 환자의 상지 기능에 기능적 전기 자극이 미치는 영향: 무작위대조군연구에 기초한 체계적 고찰)

  • Hwang, Su-jin;Seo, Yeon-ju
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2022
  • Objective: Electrical stimulation is an assistive technology used to aid the recovery of upper limb use after stroke. The purpose of this systematic review was to determine the effects of electrical stimulation on upper extremity function in individuals with hemiparetic stroke and to develop an evidence base that supports the use of electrical stimulation for upper limb recovery after stroke. Design: A systematic review based on randomized controlled trials (RCTs). Methods: Studies published before April 20 2021 were collected for this review by searching PubMed, four other databases, and RCTs that reported the effects of electrical stimulation on upper extremity function in individuals with the characteristic stroke type. Information on the following parameters was extracted from each study: surname of first author, published year, country, participants, intervention, intervention's intensity, comparison, outcomes, additional therapy, and summary of results. This review also evaluated the bias within each study, including any selection bias, performance bias, detection bias, attrition bias, and reporting bias. Results: This review included five RCTs, and 208 stroke patients were included in the analysis. Stroke patients who underwent electrical stimulation showed significantly improved grip and pinch strengths, wrist range of motion, and basic daily living compared to those in the control group; however, there was no improvement in upper extremity function. Of the selected papers, 60% showed a "high risk" of performance bias, and 20% showed a "high risk" of detection bias. Conclusions: The results of this systematic review suggest that electrical stimulation provides some benefits to stroke patients, such as improved hand strength and range of motion. However, future studies are needed to provide clinical evidence of the effects of electrical stimulation on upper extremity function in stroke patients.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Regulation of SPIN90 by Cell Adhesion and ERK Activation

  • Kim Sung Hyun;Kim Dae Joong;Song Woo Keun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.141-146
    • /
    • 2004
  • SPIN90 was identified to farm molecular complex with $\betaPIX$, WASP and Nck. This complex shows that SPIN90 interacts with Nck in a manner dependent upon cell adhesion to extracellular matrix, but $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex was stable even in suspended cells. This suggests that SPIN90 serves as an adaptor molecule to recruit other proteins to Nck at focal adhesions. SPIN90 was phosphorylated by ERK1, which was, itself, activated by cell adhesion and platelet-derived growth factor. Such phosphorylation of SPIN90 likely promotes the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex and Nck. It thus appears that the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex with Nck is crucial for stable cell adhesion and can be dynamically modulated by SPIN90 phosphorylation that is dependent on cell adhesion and ERX activation. SPIN90 directly binds syndapin I, syndapin isoform II-1 and II-s via its PRD region in vitro, in vivo and also associates with endocytosis core components such as clathrin and dynamin. In neuron and fibroblast, SPIN90 colocalizes with syndapins as puntate form, consistent with a role for SPIN90 in clathrin-mediated endocytosis pathway. Overexpression of SPIN90 N-term inhibits receptor-mediated endocytosis. Interestingly, SPIN90 PRD, binding interface of syndapin, significantly blocks internalization of transferrin, demonstrating SPIN90 involvement in endocytosis in vivo by interacting syndapin. Depletion of endogenous SPIN90 by introducing $\alpha-SPIN90$ also blocks receptor-mediated endocytosis. Actin polymerization could generate farce facilitating the pinch-out event in endocytosis, detach newly formed endocytic vesicle from the plasma membrane or push out them via the cytosol on actin tails. Here we found that SPIN90 localizes to high actin turn over cortical area, actin-membrane interface and membrane ruffle in PDGF treated cells. Overexpression of SPIN90 has an effect on cortical actin rearrangement as filopodia induction and it is mediated by the Arp2/3 complex at cell periphery. Consistent with a role in actin organization, CFP-SPIN90 present in actin comet tail generated by PIP5 $kinase\gamma$ overexpression. Therefore this study suggests that SPIN90 is functional linker between endocytosis and actin cytoskeleton.

  • PDF

The Effects of Simultaneous Application of Peripheral Nerve Sensory Stimulation and Task-Oriented Training to Improve Upper Extremity Motor Function After Stroke: Single Blinded Randomized Controlled Trial (뇌졸중 환자의 상지기능 개선을 위한 말초감각신경자극과 과제 지향적 훈련의 동시 적용 효과: 단일 맹검 무작위대조군실험)

  • Kim, Sun-Ho;Won, Kyung-A;Jung, Eun-Hwa
    • Therapeutic Science for Rehabilitation
    • /
    • v.9 no.4
    • /
    • pp.7-20
    • /
    • 2020
  • Objective : This study aimed to investigate the effect of simultaneous application of peripheral nerve sensory stimulation and task-oriented training on the improvement of upper extremity motor function after stroke. Methods : This study included 29 patients with hemiplegia. The 14 subjects were in the peripheral nerve sensory stimulation and task-oriented training group for 4 weeks (30 min/d, 5 d/wk), while the 15 control group subjects underwent only task-oriented training for the same duration. The outcome measures were the percentage of voluntary baseline muscle contractions of the wrist and shoulder and Box and Block Test, grip and pinch strength, and Action Research Arm Test. Results : After 4 weeks, muscle activity of extensor carpi radialis, flexor carpi radialis and grip strength and Action Research Arm Test were significantly higher in the experimental group. Conclusion : Simultaneous application of the peripheral nerve sensory stimulation and task-oriented training was found to be superior to task-oriented training for improving upper extremity motor function of adults with stroke.