• Title/Summary/Keyword: pin-hole

Search Result 200, Processing Time 0.027 seconds

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.

Two-Arm Cooperative Assembly Using Force-Guided Control with Adaptive Accommodation (적응 순응성을 갖는 힘-가이드 제어 기법을 이용한 두 팔 로봇 협동 조립작업)

  • Choi, Jong-Dho;Kang, Sung-Chul;Kim, Mun-Sang;Lee, Chong-Won;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 2000
  • In this paper a new two-arm cooperative assembly(or insertion) algorithm is proposed. As a force-guided control method for the cooperative assembly the adaptive accommodation controller is adopted since it does not require any complicated contact state analysis nor depends of the geometrical complexity of the assembly parts. Also the RMRC(resolved motion rate control) method using a relative jacobian is used to solve inverse kinematics for two manipulators. By using the relative jacobian the two cooperative redundant manipulators can be formed as a new single redundant manipulator. Two arms can perform a variety of insertion tasks by using a relative motion between their end effectors. A force/torque sensing model using an approximated penetration depth calculation a, is developed and used to compute a contact force/torque in the graphic assembly simulation . By using the adaptive accommodation controller and the force/torque sensing model both planar and a spatial cooperative assembly tasks have been successfully executed in the graphic simulation. Finally through a cooperative assembly task experiment using a humanoid robot CENTAUR which inserts a spatially bent pin into a hole its feasibility and applicability of the proposed algorithm verified.

  • PDF

Ultrasonic Flaw Detection of Turbine Blade Roots (터빈 동익 Root부 초음파 탐상)

  • Jung, H.K.;Chung, M.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 1993
  • The necessity of ultrasonic inspection to detect the cracks in turbine blade is being increased as the forced outage of nuclear power plants have been occurred due to blade failure in turbine components. However, the complex blade root geometry causes the ultrasonic inspection technique not to be established yet and much effort is required to set up a more reliable inspection. In this paper, the ultrasonic inspection technique for flaw detectability, skew angle effect, identification of flaw and geometric signal have been investigated with a test block and discussed the interpretation of ultrasonic signal through the acquisition and analysis of RF waveform. The experimental results show that the proper examination procedure can be established. It is required that the skew angle is essential to decrease the effect of signals from the complex blade geometry. The present results of this study can be applied to the site inspection without blade disassembly.

  • PDF

Development of Walking Type Chinese Cabbage Transplanter (보행형 배추정식기 개발)

  • Park S. H.;Kim J. Y.;Choi D. K.;Kim C. K.;Kwak T. Y.;Cho S. C.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.81-88
    • /
    • 2005
  • Manual transplanting Chinese cabbage needs 184 hours per ha in Korea. Mechanization of Chinese cabbage transplanting operation has been highly required because it needs highly intensive labor during peak season. This study was conducted to developed walking-type Chinese cabbage transplanter. In order to find out design factor of the transplanter, a kinematic analysis software, RecurDyn, was used. The prototype was tested in the circular soil bin and its operating motion was captured and analyzed using high speed camera system. Prototype was one row type which utilized original parts of engine, transmission and etc. from walking-type rice transplanter in order to save the manufacturing cost. Success ratio of pick-up device of hole-pin type and latch type were $96.0\%$ and $99.2\%$, respectively. which was highly affected by feeding accuracy of feeding device of seedling. Transplanting device of the prototype produced a elliptic loci which were coincident with those produced by the computer simulation. Prototype proved good performance in transplanting with mulching and without mulching operation, either. Working performance of prototype was 22 hours per ha and operation cost of the prototype was 961,757 won per ha. So, it would reduce $88\%$ of the labor and $29\%$ of operation cost.

Assessment of the Optic-guided Patient Positioning for Spinal Stereotactic Radiosurgery Using Novalis ExacTrac System (노발리스 ExacTrac system을 이용한 척추 정위 방사선수술 방법 평가)

  • 이동준;손문준;최광영;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • Stereotactic radiosurgery for intracranial lesion is well established since the Lars Leksell first introduced radiosurgery concept in 1951 Its use in the treatment of spinal lesion has been limited by the availability of effective immobilization devices. The first clinical experience of the spinal stereotactic radiosurgery technique was reported by Hamilton AJ. in 1995. Recently, Optic-guided patient positioning technique for extracranial stereotactic radiosurgery was developed and reported. This study is for assess the target positioning accuracy of the optic guided patient positioning system Exactrac (BrainLab., Inc, Germany). We have designed phantom for assess the accuracy of spinal stereotactic radiosurgery The infrared reflective body markers attached to the relatively immobile part of the body and a series of 2 mm CT images was taken. The image sets were transferred to the planning computer. During the radiosurgery treatment, we measure the real-time display showing the positioning values from Exactrac computer. And we compare the isocenter deviation from irradiated center point of the film which was mounted on the lesion site of the phantom and pin hole site of that film. The accuracy of the ExacTrac system in positioning a target point shows enough for the clinical applications.

  • PDF

Simulation of Radiation Imaging based on the Scanning of Pin-hole Stereo Vision Sensors (핀홀 스테레오 비전 센서의 공간 스캔을 통한 방사선의 영상화 시뮬레이션)

  • Park, Soon-Yong;Baek, Seung-Hae;Choi, Chang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1671-1680
    • /
    • 2014
  • There are always much concern about the leakage of radiation materials in the event of dismantle or unexpected accident of nuclear power plant. In order to remove the leakage of radiation materials, appropriate dispersion detection techniques for radiation materials are necessary. However, because direct handling of radiation materials is highly restricted and risky, developing radiation-related techniques needs computer simulation in advance to evaluate the feasibility. In this paper, we propose a radiation imaging technique which can acquire 3D dispersion information of radiation materials and tested by simulation. Using two virtual 1D radiation sensors, we obtain stereo radiation images and acquire the 3D depth to virtual radiation materials using stereo disparity. For point and plane type virtual radiation materials, the possibility of the acquisition of stereo radiation image and 3D information are simulated.

Isocenter Reproducibility with Mask Fixation System in Stereotactic Radiosurgery (정위 마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성)

  • 이동준;손문준;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.135-138
    • /
    • 2002
  • Fractionated stereotactic radiosurguy (FSRS) requires precise and reproducible patient set up. For these reasons non-invasive mask fixation methods have been used in Linac based FSRS. In this study, we measured and assessed the isocenter reproducibility using a commercial head mask fixation system based on thermoplastic materials. For the verification and the measurement of isocenter deviation a special acrylic brain phantom was designed. The designed phantom has 22 vertical rods and each rod has different lengths. At the end of the 8 rods, the monochromic film is attached and irradiated due to planned target position. Deviations of isocenter were measured separately for each direction. The mean deviation showed 0.4 mm in longitudinal direction, 0.1 mm in the lateral direction, 0.1 mm in the anterior-posterior direction of the treatment couch. The data demonstrates the high accuracy and reproducibility. This study reinforces previous literature published.

  • PDF

Effects of film liners, ethylene scrubber, alcohol releaser and chlorine dioxide on the berry quality during simulated marketing in 'Campbell Early' grapes

  • Kim, Sung-Joo;Choi, Cheol;Ahn, Young-Jik;Lim, Byung-Sun;Chun, Jong-Pil
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.415-424
    • /
    • 2020
  • This study investigated the effects of an ethylene scrubber (ES) with a micro-perforated polypropylene (MP-PP, 30 ㎛) or a high density polyethylene (MP-HDPE, 30 ㎛) film liner for the export carton packaging box in 'Campbell Early' grapes. Rachis browning was highest in the untreated group, followed by MP-PP and MP-HDPE for 14 days of simulated marketing at 20℃. The combination treatment of ES with the film liners showed a partial inhibition of the rachis browning regardless of the film liners. The effects of an alcohol releaser (AR) sachet or chlorine dioxide (CD) diffuser co-packaging were also investigated in the 'Campbell Early' grapes packed with the MP-HDPE (40 × 99 pin hole·m-2) film liner. The CD 1 g treatment showed a very limited weight loss of 1.1%, which was significantly lower than the 4.7% of the untreated control after 14 days of simulation marketing at 20℃. The berry shatter was 0.7% for the MP-HDPE + CD 1 g treatment and 1.8% for the MP-HDPE + CD 5 g treatment on the 10th day of the simulated marketing, which was significantly lower than the 8.9% of the control. The stem browning was significant suppressed until the 10th day of the simulated marketing. In particular, the CD 1 g treatment in combination with the MP-HDPE showed a low rachis and pedicel browning index of 2.0, which is 50% and 40% lower than that of the untreated control and the MP-HDPE single treatment, respectively. In addition, the CD 1 g treatment group showed a higher decay reduction effect than the CD 5 g treatment group, which caused high concentration damage.

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).