• Title/Summary/Keyword: pin support

Search Result 65, Processing Time 0.028 seconds

STATUS OF THE ASTRID CORE AT THE END OF THE PRE-CONCEPTUAL DESIGN PHASE 1

  • Chenaud, Ms.;Devictor, N.;Mignot, G.;Varaine, F.;Venard, C.;Martin, L.;Phelip, M.;Lorenzo, D.;Serre, F.;Bertrand, F.;Alpy, N.;Le Flem, M.;Gavoille, P.;Lavastre, R.;Richard, P.;Verrier, D.;Schmitt, D.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.721-730
    • /
    • 2013
  • Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase.

Alveolar bone thickness around maxillary central incisors of different inclination assessed with cone-beam computed tomography

  • Tian, Yu-lou;Liu, Fang;Sun, Hong-jing;Lv, Pin;Cao, Yu-ming;Yu, Mo;Yue, Yang
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • Objective: To assess the labial and lingual alveolar bone thickness in adults with maxillary central incisors of different inclination by cone-beam computed tomography (CBCT). Methods: Ninety maxillary central incisors from 45 patients were divided into three groups based on the maxillary central incisors to palatal plane angle; lingual-inclined, normal, and labial-inclined. Reformatted CBCT images were used to measure the labial and lingual alveolar bone thickness (ABT) at intervals corresponding to every 1/10 of the root length. The sum of labial ABT and lingual ABT at the level of the root apex was used to calculate the total ABT (TABT). The number of teeth exhibiting alveolar fenestration and dehiscence in each group was also tallied. One-way analysis of variance and Tukey's honestly significant difference test were applied for statistical analysis. Results: The labial ABT and TABT values at the root apex in the lingual-inclined group were significantly lower than in the other groups (p < 0.05). Lingual and labial ABT values were very low at the cervical level in the lingual-inclined and normal groups. There was a higher prevalence of alveolar fenestration in the lingual-inclined group. Conclusions: Lingual-inclined maxillary central incisors have less bone support at the level of the root apex and a greater frequency of alveolar bone defects than normal maxillary central incisors. The bone plate at the marginal level is also very thin.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

An Empirical Study on the Determinants of Usage and Performance of the uTradeHub in Korean SMEs (한국 중소기업의 uTradeHub 활용 및 성과 결정요인에 관한 실증적 연구)

  • Moon, Hee-Cheol;Cao, Pin
    • International Commerce and Information Review
    • /
    • v.15 no.1
    • /
    • pp.333-356
    • /
    • 2013
  • The main purpose of this article is to find out the determinants of usage and performance of the uTradeHub system in Korean SMEs. To achieve the purpose of the study, the research model and the hypotheses were developed based on the previous research on uTradeHub and e-Trade. And to test the research hypotheses, empirical survey was conducted to Korean SMEs which were using uTradeHub services. The results of the empirical analyses are as follows. First, among the external factors, intra-industry competition and transaction intensity were significant determinants of uTradeHub usage level. Secondly, among the internal factors, only CEO's support was found to be a significant determinant. Thirdly, among the IT related factors, IT infrastructure and IT training were positively related to uTradeHub usage level. Finally, the uTradeHub usage level was found to have positive effect both on financial and non-financial export performance of the Korean SMEs.

  • PDF

A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission (자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement (300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계)

  • An-Mok Jeong;Hak-Jun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.88-93
    • /
    • 2023
  • As the demand for High Bandwidth Memory (HBM) increases and the handling capability of larger wafers expands, ensuring reliable Total Thickness Variation (TTV) measurement for stacked wafers becomes essential. This study presents the design of a measurement module capable of measuring TTV across the entire area of a 300mm wafer, along with estimating potential mechanical measurement errors. The module enables full-area measurement by utilizing a center chuck and lift pin for wafer support. Modal analysis verifies the structural stability of the module, confirming that both the driving and measuring parts were designed with stiffness exceeding 100 Hz. The mechanical measurement error of the designed module was estimated, resulting in a predicted measurement error of 1.34 nm when measuring the thickness of a bonding wafer with a thickness of 1,500 ㎛.

An Empirical Study on the Factors Affecting the Usage and Performance of E-trade in Chinese SMEs (중국 중소기업의 전자무역 활용과 성과에 영향을 마치는 요인에 관한 연구)

  • Lee, Jin-Seok;Jiang, Yu-Shan;Cho, Pin
    • International Commerce and Information Review
    • /
    • v.13 no.3
    • /
    • pp.31-53
    • /
    • 2011
  • The purpose of this study is to find out the factors affecting the usage and performance of e-Trade in Chinese Small and Medium-sized Enterprises(SMEs). To achieve the purpose of the study, the research model and hypotheses, depicting the relationship among external factors, internal factors, relationship characteristics, e-Trade usage level, and performance were developed based on the existing literature on e-Trade. To test the significance of the research model and hypotheses, an empirical survey were conducted to the Chinese SMEs in Yangtze River Delta area, which are actively using the e-Trade in their trade processes. According to the result of the statistical analyses on the 85 effective questionnaires from the sample firms, support of the government related institutions(one of the external factors) and CEO's support(one of the internal factors) had significant relationship with e-Trade usage level, but no significant relationship was found between the relationship characteristics and e-Trade usage level. Like the results of the most of the existing literature, e-Trade usage level were formed to significantly affected the e-Trade performance. Finally, based on results of the empirical survey, several implications on the Chinese SME's e-Trade strategies and policy alternatives were proposed as a concluding remark.

  • PDF

A Study on the Development of an Oil Sweep System for Small Patrol Vessels (소형 경비함정 장착용 유흡착장비 개발에 관한 연구)

  • Lee, Si Chan;Kim, Hyung Gyu;Park, Yong Hee;Kim, Jong Ho;Lee, Yong Jun;Kim, Dae Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.282-287
    • /
    • 2018
  • Due to limitations in responding to oil spill incidents that are urgent or that cover a wide area with only oil spill response vessels, Korea Coast Guard (KCG) patrol vessels are utilized. In this study, we have developed an oil sweep system suitable for small patrol vessels. The equipment consists of three components - fixed support, poles, and slide fixers - and can be fastened with a toggle pin to a fall prevention bar on small patrol vessels without welding or additional efforts for installation. The respective weights of each component - fixed support, poles (2 pcs), and slide fixers (4 pcs) - are approximately 9.2 kg, 6.5 kg, and 3.5 kg. The 3 m-pole, which is rotatable 180 degrees horizontally, is folded deckward when replacing oil absorbents. As the development of this equipment has improved the method of deploying and retrieving oil absorbents on KCG small patrol vessels, we expect that more efficient oil spill cleanup will be possible.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF