• Title/Summary/Keyword: pilot plant

Search Result 713, Processing Time 0.042 seconds

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse (PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용)

  • Shin, Choon-Hwan;Kang, Dong-Hyo;Park, Hae-Sik;Cho, Hyun-Kil
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.

Pilot Plant Study on Biological Nutrient Removal of Wastewater

  • Ahn, Sang-Jin;Kim, Geon-Heung;Ahn, Bok-Kyoun
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.99-106
    • /
    • 1990
  • An extensive biological nutrient removal pilot plant study of anoxic/anaerobic/ aerobic treatment process was conducted to eastblish an optimum operational mode using primary dffluent. Two operational modes, (1) Qr/Q was 3.0 and maintaining EMLSS of 3100 mg/L in which the best operational results were obtained from previous bench scale study using synthetic wastewater (2) Qr/Q was 0.5 and EMLSS of 2200 mg/L which was compatible with the main plant, were Compared and evaluated for removal of nitrogen and/or phosphorous under field conditions. The nitrogen removal increased with increasing recycle ratios, but the phosphorous removal revealed more consistent results with 83percent removal efficiency in the second mode compared with 80 percent in the first mode. Above all, the two modes equally showed good BOD and nitrogen removals by nitrification-denitrification processes. It was also observed that no scum formed in the pilot plant and the sludge exhibited excellent settling characteristic all the time. The modified biological nutrient removal train can be adopted to the main plant without any major changes of their operational modes.

  • PDF

Design and Operation of 3MW Pilot Plant of $Mg(OH)_2$ Flue Gas Desulfurization Process

  • Kim, In-Won;Jin, Sang-Hwa;Choi, Byung-Moon;Lee, Hyung-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.2-116
    • /
    • 2001
  • Korea Institute of Energy Research(KIER) has designed the 3MW pilot scale wet FGD process based on the experimental results of the bench scale FGD system which can treat 150 m3/hr of flue gases. The effects of process chemistry, packing material, and operating variables including L/G ratio, pH, scrubber pressure drop were investigated. In cooperation with Kyunggi Chemicals, the 3MW pilot scale plant was established on the industrial site at Onsan, Korea. This system has been operating since October 1999. This paper introduces an outline of the design features of the pilot plant and discusses its operational results.

  • PDF

Comparison of Anaerobic Digestion for food wastewater and food waste by HADS Pilot Plant (HADS Pilot Plant를 이용한 음폐수와 음식물쓰레기의 혐기성 소화 비교)

  • Ju, Donghun;Lee, Jungmin;Park, Seongbum;Sung, Hyunje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.245-245
    • /
    • 2010
  • 우리나라 생활폐기물 중 음식물쓰레기는 가장 많은 부분을 차지하고 있다. 또한, 음식물쓰레기에서 발생되는 음폐수의 발생량은 8,926톤/일에 달하고 있지만, 이 중 극히 일부만이 하수처리장 등에서 병합 처리되고 있고 대부분은 해양 투기되고 있는 실정이다. 이에 본 연구에서는 독일 GBU사로부터 중온/습식/이상 혐기성 소화 기술을 도입하여 HADS Pilot Plant를 설치하였고, 2008년 3월부터 국내 음폐수 및 음식물쓰레기에 적합한 최적의 운전기술을 확보하기 위한 Pilot Test를 실시하였다. 본 실험에 사용된 HADS Pilot Plant는 산발효조($6m^3$), 메탄발효조($50m^3$), 안정화조/가스저장조($40m^3$)그리고 가스 소각기로 구성되어 있다. 그리고 적용 음폐수 및 음식물쓰레기는 경기도 Y군에 위치한 사료화 시설에 반입되는 것을 이용하였는데 음폐수는 평균 TS 13.5%, VS 80%, pH $3.7{\pm}0.2$의 성상을 나타내었다. 이를 이용해 계단식으로 유기물 부하를 증가시키면서 $4kgVS/m^3/d$까지 적용하며 중온 상태에서 혐기성 소화를 실시한 결과, $0.8Nm^3/kgVS_{rem}/d$의 바이오가스 회수 및 85%의 VS 감량이 가능함을 확인하였다. 그리고 음식물쓰레기는 음폐수와 달리 1차 파쇄/선별기 및 배관상에 설치되는 2차 미세파쇄/선별기를 통한 전처리를 실시하였고, 1차 파쇄/선별 후 평균적으로 TS가 17.4%, VS는 81%, pH는 $3.85{\pm}0.2$의 성상을 나타내는 음식물쓰레기를 2차 미세파쇄/선별기를 거쳐 Pilot Plant의 산발효조에 투입하여 중온상태에서 혐기성 소화를 실시하였다. 음폐수 적용시와 마찬가지로 계단식으로 유기물 부하를 증량하면서 $4kgVS/m^3/d$까지 적용하여 운전하였고, 그 결과 약 $0.9{\sim}1.2Nm^3/kgVS_{rem}/d$의 바이오가스 회수와 85~87%의 VS 감량 효율을 확인하였다. 음폐수와 음식물쓰레기의 혐기성 소화 실험 결과, 제거된 VS량을 기준으로 보았을 때, 음식물쓰레기에서 더 많은 바이오가스 발생하였는데 이는 음식물쓰레기에 존재하는 고형물이 미생물들의 서식 공간으로 활용됨에 따라 혐기성 소화 과정에서 일어나는 혼합 발효 및 공영양 대사가 음폐수 대비 좀 더 수월하게 일어날 수 있게 된 데에 따른 결과라고 생각된다. 당사의 HADS Pilot Plant test에서는 계단식의 순차적인 유기물 부하 증량과 총VFA/총 알카리도 비율을 0.3~0.4 수준이하로 유지하며 운전함에 따라 음폐수와 음식물 모두에서 안정적으로 $4kgVS/m^3/d$까지의 유기물 부하 적용이 가능하였다. 또한, 생산된 바이오가스 내 메탄의 함량은 60~65%를 유지하였으며, 메탄발효조의 pH는 별도의 조절이 없이도 운전기간 동안 평균 7.8~7.9 수준을 유지하였다. 이처럼 pH 3.7~3.8의 음폐수 또는 음식물쓰레기의 투입에도 안정적인 완충능력을 보여준 것은 소화조 내에서 기질로부터 분해되어져 나오는 암모니아와 이산화탄소가 강력한 버퍼 시스템을 구축하고 있음에 따른 결과로 사료된다. 그리고 음폐수와 음식물쓰레기의 경우 모두 85%이상의 높은 VS 제거율을 보여주었는데 이는 당사의 HADS Pilot Plant 소화조의 구조가 내통과 외통으로 구분되어져 있음에 따라 plug flow + CSTR의 특징을 가짐에 따른 결과로 판단된다. 상기한 결과를 바탕으로 향후에는 $5kgVS/m^3/d$ 수준의 유기물 부하 적용운전도 계획하고 있다.

  • PDF

The Remodelling of Hydraulic Structure in a Distribution Channel for Improving the Equality of the Flow Distribution (II): Optimization through Wet Tests (수리구조 개선을 통한 분배수로 균등분배 성능 향상에 관한 연구(II): Pilot plant 실험을 통한 최적화)

  • Park, No-Suk;Kim, Seong-Su;Hwang, Jun-Sick;Im, Jae-Rim;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.581-587
    • /
    • 2007
  • In order to suggest the methodology for improving the equality of flow distribution in a distribution channel, wet tests were carried out for pilot plant which was scaled down to 1/8 of full scale distribution channel being operated in domestic K_water treatment plant. The correlation between various hydraulic variables and their effects on the equality of flow distribution was evaluated through wet tests using pilot plant. From the results of wet tests, the longitudinal baffle with orifices was installed in the distribution channel, the equality of flow distribution was improved on the condition that the Froude number in pilot plant was similar with that in the full scale channel. Also, the opening ratio of the orifices on the longitudinal baffled did not have influence on the performance of the equality of flow distribution when the average flow velocity and Froud number were relatively low (Froude number ${\fallingdotseq} 0.01$). In the other hand, the performance of the equality of flow distribution was improved with increasing the opening ration of on the longitudinal baffle under conditions of relatively high average flow velocity and high Froud number(${\gtrsim}0.1$)

Optimization of Supercritical Water Oxidation(SCWO) Process for Decomposing Nitromethane (Nitromethane 분해를 위한 초임계수 산화(SCWO) 공정 최적화)

  • Han, Joo Hee;Jeong, Chang Mo;Do, Seung Hoe;Han, Kee Do;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.659-668
    • /
    • 2006
  • The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.

Experiments of Combustion Vibration in the Pilot Furnace for Fossil Power Plant under Combustion Test (I) (화력 발전용 시험연소로의 연소시험 중의 연소진동 실험(I))

  • Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • This paper presents results of test for combustion vibration in the pilot furnace for fossil power plant under combustion test. We measured static pressure variation in the pilot furnace together with air and fuel flow. From test results, it shows that vibration magnitude is affected by air and fuel flow. Also, a finite element analysis using a commercial S/W is performed to calculate acoustic mode of the pilot furnace. These results show that dominant frequency occurred is related to acoustic natural frequency of furnace. After this, it needs to be studied the relation between dominant frequency of combustion vibration and air flow rate.

  • PDF

Cryogenic Distillation Apparatus for Hydrogen Isotopes Separation (수소동위원소 분리를 위한 초저온증류장치)

  • 송규민;손순환;김광신;김위수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.163-166
    • /
    • 2001
  • KEPCO has a plan to construct TRF (tritium removal facility) in wolsong nuclear power plant site by 2005. In advance of WTRF construction, the pilot plant was installed at KEPRI in order to show process reliability of WTRF. The main processes of this pilot plant are LPCE(liquid phase catalytic exchange) and CD (cryogenic distillation). Deuterium is separated from heavy water in LPCE process and concentrated in CD process. CD process consists of cold box, where are a distillation column and heat exchangers, vacuum system, cryogenic refrigerant supply system and instrument & control system. The experience of the pilot plant will be used in WTRF design review, operating procedure revision and fundamental education for the operators.

  • PDF

A study on the dye wastewater treatment by Fenton oxidation process (Fenton 산화공법을 적용한 염색폐수처리 연구)

  • Ahn, June-Shu;Park, Tae-Sool;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4274-4282
    • /
    • 2011
  • In this study, Fenton reaction was studied for the possibility of applying as advanced treatment and its optimal condition for the removal of refractory organics from the dye wastewater. Fenton reaction was applied to remove refractory organics after the bio-treatment (secondary treatment) inside test laboratory and on-site pilot plant. Wastewater from the secondary treatment was used and its $COD_{Mn}$ was measured as 30~50mg/L. After the Fenton reaction, the optimal condition was found as pH 3~3.5, reaction time 2~2.5hr, chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was 3 : 1. When chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was at its optimal, amount of sludge volume ($SV_{2hr}$) was 21~28%. With pilot plant test, removal rate was heavily influenced by the hydraulic retention time(HRT), and optimum value of HRT was 2.0 hr. When pilot plant($2m^3/d$) was placed on-site and operated continuously, it showed steady and fairly good treatment of COD where COD removal rate was 60~70%, treated water showed below 20mg/L.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).