• Title/Summary/Keyword: pilot plant

Search Result 716, Processing Time 0.028 seconds

A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities (하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구)

  • Park, Chanhyuk;Hong, Seok-Won;Lee, Sanghyup;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

Development of Ready-mixed Shotcrete I : Basic Study (레디믹스트 숏크리트 개발 I : 기초 연구)

  • Kim, Dong-Min;Ma, Sang-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.171-185
    • /
    • 2011
  • Ready-mixed shotcrete that mixed with high quality aggregate and can improve construction quality is produced in a dry mortar plant and transported to construction sites. Because of using aggregate that produced in a special plant, Ready-mixed shotcrete has many advantages : good grain-size distribution, minimum stone powder, high quality and standardization material, etc. In this basic study different from the existing study that limited to additive and accelerator, the improvement of aggregate quality was tried to upgrade the shotcrete performance. The investigation about the construction conditions of shotcrete was performed and the result of an opinion poll was analyzed for a good grasp of the problems in domestic shotcrete quality. Pilot Plant Test was also performed to minimize the material segregation in plant manufacturing process. In additions, the field test was performed to find the optimum contents of synthetic fiber, appearing the same flexible toughness with that of steel fiber, and to find the optimum replacement ratio of blast furnace slag.

Reusing of dye wastewater by reverse osmosis (역삼투를 이용한 염료폐수 재활용 적용사례)

  • 최광호;김건태
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.04b
    • /
    • pp.69-90
    • /
    • 1999
  • 역삼투공정을 이용하여 염료폐수를 공업용수로 재활용하기 위해 설비의 구성, 운전조건 및 경제성에 대한 검토를 실시하였다. 이를 위해 먼저 원수의 성상 및 처리수 수질기준에 대한 검토를 통해 단위공정으로 물리적여과, 역삼투 및 증발농축으로 선정하고 2차에 걸친 Pilot Test를 실시하여 실 Plant 설치를 위한 설계인자를 확보하였다. 이를 바탕으로 750m$^{3}$/일의 염료폐수재활용 Plant를 설치하고 시운전과정을 통하여 성능 확인 및 운전조건을 확보하고 이에 따른 설비투자비 및 운전비 등의 경제성 검토를 실시하였다.

  • PDF

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

Development of VR Monitoring System for Gas Plant (가상현실을 이용한 가스플랜트의 VR Monitoring System 개발)

  • Suh, Myung-Won;Cho, Ki-Yang;Park, Dae-You
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.213-218
    • /
    • 2001
  • VR (Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

  • PDF

A study of on site Pilot plant test of drying sewage sludge using Chain crusher flash dryer (타격기류 건조장치에 의한 하수슬러지의 건조 실증실험에 관한 연구)

  • Ahn, June-Shu;Kim, Byung-Tae;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5628-5636
    • /
    • 2012
  • Effective drying method of sewage sludge is researched in this study. To dry the sludge, chain crusher flash dryer was adopted to remove moisture content in the cell which is mostly responsible for the sludge moisture content. And Pilot plant experiment was conducted in real life sewage treatment plant to study effect and characteristics of operating conditions. Operating variables include sludge feeding rate, rotational speed of chain, process temperature and feed moisture content. As rotational speed of chain increased, product yield of sludge increased, and the performance of the testing system increased. And, as process temperature increased, the sludge drying efficiency increased. It is found that optimum feed moisture content is at 60% which shows the maximum sludge product yield and about 10 moisture content(%) of sludge product. Sludge feed rate showed optimal value, and when the sludge feed rate is exceeded, sludge product yield did not increased but the amount of residue increased. Pilot plant experiment results are as follow. The optimal condition for the rotational speed of chain 1600rpm(max. speed), final sludge discharge temperature $80^{\circ}C$, feed moisture content 60%, and feed rate 60kg/h. When the plant was operated at the optimal conditions, the final product showed fairly good results such as sludge product yield 85.5%, moisture content 11.0% and sludge drying efficiency 81.7%.

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process (파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Kim, Jin-Ho;Kim, Hyo-Sik;Yoo, Young-Don;Kim, Jun-Woo;Koh, Dong-Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.420-424
    • /
    • 2019
  • In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low $H_2/CO$ mole ratio (including $CO_2$ 22%) are evaluated. The operating conditions ($H_2O/CO$ ratio of the $1^{st}$ adiabatic reactor, operating temperature range of $4^{th}$ isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and $CH_4$ selectivity are 100% and 96.9%, respectively, while the maximum $CH_4$ productivity is $660ml/g_{cat}{\cdot}h$.

Evaluation of the Nutrient Removal Performance of the Pilot-scale KNR (Kwon's Nutrient Removal) System with Dual Sludge for Small Sewage Treatment (소규모 하수처리를 위한 파일럿 규모 이중슬러지 KNR® (Kwon's nutrient removal) 시스템의 영얌염류 제거성능 평가)

  • An, Jin-Young;Kwon, Joong-Chun;Kim, Yun-Hak;Jeng, Yoo-Hoon;Kim, Doo-Eon;Ryu, Sun-Ho;Kim, Byung-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.67-77
    • /
    • 2006
  • A simple dual sludge process, called as $KNR^{(R)}$ (Kwon's Nutrient Removal) system, was developed for small sewage treatment. It is a hybrid system that consists of an UMBR (Upflow multi-layer bioreactor) as anaerobic and anoxic reactor with suspended denitrifier and a post aerobic biofilm reactor, filled with pellet-like media, with attached nitrifier. To evaluate the stability and performance of this system for small sewage treatment, the pilot-scale $KNR^{(R)}$ plant with a treatment capacity of $50m^3/d$ was practically applied to the actual sewage treatment plant, which was under retrofit construction during pilot plant operation, with a capacity of $50m^3/d$ in a small rural community. The HRTs of a UMBR and a post aerobic biofilm reactor were about 4.7 h and 7.2 h, respectively. The temperature in the reactor varied from $18.1^{\circ}C$ to $28.1^{\circ}C$. The pilot plant showed stable performance even though the pilot plant had been the severe fluctuation of influent flow rate and BOD/N ratio. During a whole period of this study, average concentrations of $COD_{cr}$, $COD_{Mn}$, $BOD_5$, TN, and TP in the final effluent obtained from this system were 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, and 0.87/0.17 mg/L (with/without poly aluminium chloride(PAC)), which corresponded to a removal efficiency of 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, and 55.4/90.3%, respectively. Excess sludge production rates were $0.026kg-DS/m^3$-sewage and 0.220 kg-DS/kg-BOD lower 1.9 to 3.8 times than those in activated sludge based system such as $A_2O$ and Bardenpho.

  • PDF