• Title/Summary/Keyword: pile-bent bridge

Search Result 10, Processing Time 0.021 seconds

[Retracted]Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge ([논문철회]토압분리형 일체식 교대 교량의 파일벤트에 대한 최소근입깊이 해석)

  • Kim, Hongbae;Kim, Taesu;Park, Jongseo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.45-53
    • /
    • 2017
  • IPM bridge was developed to revise the problems of IAB bridge by Nam et al, (2016). This research conducted the p-y analysis to examine the parameter traits among the protruded length (H), penetrated length (L) of pile bent and soil conditions. From the results, the maximum bending moment happened in the top segment of pile bent, because it is integrated to the upper structure. Also, the maximum shear force was shown in the boundary of the sand and weathered soil zones according to the analysis soil conditions. The maximum member force and unbraced length is converged when the ratio (L/H) of protruded length (H) and penetrated length (L) is 1.0. The larger material force is happened, if the pile bent is penetrated shallowly compared to the protruded length. The definite inflection points were shown in the horizontal displacement curve from the p-y analysis, also the smaller penetrated length made the curve grade slower.

A Study on the Application of Minimum Reinforcement Ratio in Pile-Bent structure (단일형 현장타설말뚝의 최소 철근비 적용을 위한 연구)

  • Kim, Jae-Young;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.122-130
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges in particular are required in geotechnical engineering. However, previous design method based on virtual fixed point theory cannot adequately predict Pile-Bent structure‘s physical behavior. Therefore, this paper describes a new analysis and design of Pile-Bent structure for grand bridges. A detailed analysis was performed for column-pile interactions using FB-Pier program and Midas program. As a result, the behavior of a column-pile is estimated and highlighted. Moreover, based on this study, it is found that the minimum reinforcement ratio(=0.4%) is applicable for plastic behavior of columns.

  • PDF

A Case Study on the Design and Construction of the Pile Bent System (단일현장타설말뚝을 이용한 교량기초의 설계 및 시공 사례)

  • Cho, Sung-Han;Kim, Hyung-Wook;Kim, Zu-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.357-367
    • /
    • 2010
  • In this study, several design and construction cases of the pile bent system for bridges were introduced. The lateral displacement of the pile bent system is larger than the displacement of pile cap system, due to the smaller bending stiffness and the longer unsupported length. So, the analysis of the lateral pile displacement is main factor for the design of pile bent system and superstructure. For the accurate estimation of the pile displacement, an iterative analysis method was developed. The superstructure was analyzed regarding the pile foundation as $6{\times}6$ spring and the substructure was analysed using non-linear load transfer curves (p-y, t-z, q-z curve). And, to verify this analysis method, the estimated displacements are compared with the results of lateral load test. This analysis method is expected to be a viable alternative approach for the design of bridge foundation hereafter.

  • PDF

Behavior of integral abutment bridge with partially protruded piles

  • Park, Min-Cheol;Nam, Moon S.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.601-614
    • /
    • 2018
  • This study presents structural and parametric analyses on the behavior of an integrated and pile-bent abutment with mechanically stabilized earth wall (IPM) bridge. The IPM bridge is an integral abutment bridge (IAB) with partially protruded piles, which excludes earth pressure by means of a mechanically stabilized earth wall developed by the authors. The results of the analysis indicate that the IPM bridge, as any other IAB, is influenced to a large extent by temperature and time-dependent loads. When these loads are applied, the stress on a pile in the IPM bridge decreases as the displacement of the pile top increases, because the piles protrude from the ground surface and no soil reaction is generated on the protruded pile. Because the length of an IAB is restricted by the forces acting on its piles, the IPM bridge is an effective alternative to extend its length.

Examination of Allowable Displacement by Structural Analysis of IPM Bridge (토압분리형 교량의 구조해석을 통한 허용 변위량 검토)

  • Kim, Hong-Bae;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.534-544
    • /
    • 2019
  • Because the pile-bent of IPM Bridge is projected from the soil surface, excessive displacement of abutment can be induced. According to design guide of IPM Bridge, the shape of the bridges used in this study was applied to the maximum applicable 120.0m span, 30-degree for skew angle, and 10.0m for the protruded pile-bent height. The maximum displacement by the maximum span application condition of the IPM Bridge was calculated using this bridge model, and the safety of a horizontal displacement of the IPM Bridge was investigated based on the allowable displacement presented by Bozozuk. The maximum horizontal displacement of the IPM Bridge was calculated to be larger in the winter shrinkage condition than in the summer expansion condition, the horizontal displacements were more affected by the length of a bridge than by the skew angle. And the vertical displacement was not affected by the skew angle and length. As the span increases, the horizontal displacement increases significantly, the horizontal displacement at 120.0m span length was found to exceed the allowable displacement proposed by Bozozuk. However, the moment generated in the pile-bent did not exceed the plastic moment.

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.

Behavior Analysis of IPM Bridge and Rahmen Bridge (토압분리형 교량과 라멘교의 거동분석)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.597-605
    • /
    • 2019
  • IPM bridge is an integral bridge that can be applied from span 30.0m up to 120.0m, the shape conditions of IPM bridge is also applicable to the rahmen bridge. In this study, to perform the structural analysis of Rahmen bridge and IPM Bridge, the researchers compared the distribution types such as load, moment, and displacement of those bridges. Structural analysis was carried out on four span models ranging from single span bridges to four spans of 120.0 m, based on span length of 30.0 m. Structural analysis was carried out on those bridge with span 30.0m up to 120.0m. The conclusions drawn from this study are as follows. 1) The bending moments were calculated to be large for the Rahmen bridge, and the horizontal displacements were estimated to be large for the IPM bridge. 2) Since the bending moments are derived by the span length rather than the extension of the bridge, the permissible bending moment for the span length should be considered in the design. 3) The pile bent of the IPM bridge did not exceed the plastic moment of the steel pipe pile at 120.0m span, but because the horizontal displacement in the shrinkage direction is close to 25mm, the design considerations are needed. 4) In the actual design, it is important to ensure stability against member forces, so review of the negative moment is most important.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Design of Dang-San Steel Railway Bridge (당산철교의 설계)

  • 유동호;김선일
    • Computational Structural Engineering
    • /
    • v.12 no.4
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF