• Title/Summary/Keyword: pile load test

Search Result 554, Processing Time 0.025 seconds

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

Behavior of Back Ground of the Laterally Loaded Pile Group (수평하중이 작용하는 무리말뚝 배면지반의 저항거동 특성)

  • Kim, Ji-Seong;Bae, Jong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • In this study, we grasped the resistance state of the back ground which had a notable influence on computing the lateral resistance of the laterally loaded pile group in the homogeneous ground by the model test. Resistance state was grasped as the depth of rotation-point, wedge failure angle, and wedge wing angle. The model experiment is performed by varying the width, spacing and number of piles and the relative density of sand in this study. According to the observation of the rear ground surface deformation of the piles in lateral load, rotation point ratio, wedge failure angle, and wedge wing angle of the front row were similar to those of the middle row; however, those of the back row were relatively smaller. The rotation point ratio, wedge failure angle and wedge wing angle of the piles in parallel were the same as those of a single pile. Based on the model test results, equations for estimation of the rotation-point, wedge failure angle, and wedge wing angle are proposed.

A Sensitivity Analysis for the Geotechnical Parameters Estimation of a Ground around a Granular Compaction Pile (쇄석다짐말뚝 주변지반의 지반정수산정을 위한 민감도 분석)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.5-15
    • /
    • 2015
  • The GCP (Granular Compaction Pile) for the improvement objective of soft ground has been frequently studied. However, these studies were the results deduced on the basis of the numerical analysis and the laboratory model tests, and there was no study method to apply the effects of the bulging failure of a flexible pile. In this study, the sensitivity of the load-settlement curves of the uniform and the tapered GCP dependant on the geotechnical parameters estimated from N value of standard penetration test (SPT) was analyzed. It was estimated reasonably that, in the very soft clay soil (N=3 or less), elastic modulus was 700~2000 kPa and Poisson's ratio was 0.40~0.48.

A Comparison of Roughness Measurement and Load Transfer Test for the Calculation of Unit Skin Friction of Pile Foundation in Soft Rocks (기초 연암부 벽면거칠기 시험과 하중전이 시험 결과의 비교 및 단위주면마찰력의 산정에 대한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.21-30
    • /
    • 2023
  • One of the methods for calculating unit skin friction of soft-rock-socket parts for cast-in-place piles involves the roughness measurement of the parts. The measurements are conducted during the excavation stage. A roughness measuring device is installed in the excavation hole and the unit skin friction is calculated from the measured surface roughness of the rock socket. Herein, the results of roughness measurement of rock-socket parts in cast-in-place piles and that of load transfer tests are analyzed and compared. The unit skin friction from the roughness measurements can be converted into unit skin friction corresponding to the displacement of a pile generated in a load transfer test. A reduction factor is given as Rf = -0.14n + 1.48.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

A Study on the Stress Concentration of Crushed-stone Compaction Piles through Field Loading Test (현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구)

  • 이민희;최용규;임종철;황근배
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.107-114
    • /
    • 2003
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, the necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. At loading pressure, settlement showed decreasing tendency as replacement rate increases. At replacement rate of 20%, yield pressure was smaller but, at replacement rates of 30% and 40%, settlement and yield pressure were similar. The stress concentration ratio was within the range of 1.7 to 3.0 and it was higher as replacement rate increased.

Estimating the lateral profile of helical piles using modified p-y springs

  • Hyeong-Joo Kim;Hyeong-Soo Kim;Peter Rey Dinoy;James Vincent Reyes;Yeong-Seong Jeong;Jun-Yong Park;Kevin Bagas Arifki Mawuntu
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A growing trend of utilizing helical piles for soft soil strata to support infrastructure projects is currently observed in Saemangeum, South Korea. Recognized mainly due to its ease of installation and reusability proves to be far more superior compared to other foundation types in terms of sustainability. This study applies modified p-y springs to characterize the behavior of a laterally loaded helical pile with a shaft diameter of 89.1 mm affixed with 3 helices evenly spaced along its embedded length of 2.5 m. Geotechnical soil properties are correlated from CPT data near the test bed vicinity and strain gauges mounted on the shaft surface. A modification factor is applied on the p-y springs to adjust the simulated data and match it to the bending moment, soil resistance and deflection values from the strain gauge measurements. The predicted lateral behavior of the helical pile through the numerical analysis method shows fairly good agreement to the recorded field test results.

EFFICIENT SCREWING : last developments and Korean experience

  • Ines MEYUS;Maurice Bottiau;Myung-Whan Lee;Jong-Bae Park;Yong-Boo Park
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.405-414
    • /
    • 1999
  • The auger and screw piles have known an important evolution during the last decade. Besides the large success of augercast (CFA) piling systems, new systems have been developed combining, to a variable extent, the classical extraction auger with especially designed displacement tools in order to develop screw piles with partial or total lateral soil displacement. These last developments cover the whole range of lateral soil displacement and are more difficult than ever to compare. The authors present the latest evolutions in auger piling systems and compare them with respect to penetration performances, bearing capacities and amount of spoil generated. A special focus is given to a new efficient system: the OMEGA(H) pile in use in Korea since 1997. The results of the Hongcheon site are presented where this R system was applied for a new investment of the Korean National Housing Corporation (KNHC). This first important experience, with the execution of some 1,500 Omega piles with diameter 410 mm, is presented. The piles were installed through loose silty sands down to very dense sands and layers of gravel. The results of full-scale load tests are analysed and show the conformity with requirements of the clients.

  • PDF

Three-dimensional Finite Element Studies of the Behavior of Short Pile Subjected to Lateral Load near a Sandy Slope (모래사면에 설치된 수평하중을 받는 짧은 말뚝의 거동에 관한 3차원 탄소성 유한요소해석)

  • ;Ugai Keizo;Wakai Akihiko
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • 본 연구는 모래사면의 언덕근처에 설치된 짧은 말뚝의 수평하중의 영향에 관한 것이다. 3차원 탄소성 유한요소법해석과 실내 모형실험의 결과를 비교하였다. 경사 30$^{\circ}$의 사면에 시공된 짧은 말뚝의 특성을 파악하기 위해, 사면언덕에서 모형말뚝까지의 거리를 3종류로 상이하게 하여, 모형실험을 실시하였다. 사용된 모래의 지반특성은 배수조건하의 삼축압축실험으로 결정하였다. 동시에 3차원 탄소성 유한요소법에 의한 수치해석결과와 모형실험결과를 비교하였다. 본 유한요소법의 해석에 있어서 모래지반을 탄성완전소성모델(Elastic-perfectly plastic model)로 가정하여, 파괴기준으로 Mohr-Coulomb 식과 소성 포텐셜에 대해서는 Drucker-Prager 식을 적용한 MC-DP 모델로 하였다. 이러한 MC-DP 모델의 구성식은 유한요소법에서 있어 계산치의 수렴에 유익하다. 3차원 탄소성 유한요소법에 의한 수치해석이 사질토 사면의 언덕 부근에 설치된 단하의 수평거동에 대한 파악에 유효하다는 것을 확인하였다.

  • PDF

Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles (비점착성 사면의 그물식 뿌리말뚝의 보강효과)

  • Yoo, Nam-Jea;Park, Byung-Soo;Choi, Jong-Sang
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF