DOI QR코드

DOI QR Code

Estimating the lateral profile of helical piles using modified p-y springs

  • Hyeong-Joo Kim (Department of Civil Engineering, Kunsan National University) ;
  • Hyeong-Soo Kim (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Peter Rey Dinoy (Renewable Energy Research Institute, Kunsan National University) ;
  • James Vincent Reyes (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Yeong-Seong Jeong (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Jun-Yong Park (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Kevin Bagas Arifki Mawuntu (Department of Civil and Environmental Engineering, Kunsan National University)
  • Received : 2022.11.25
  • Accepted : 2023.08.12
  • Published : 2023.10.10

Abstract

A growing trend of utilizing helical piles for soft soil strata to support infrastructure projects is currently observed in Saemangeum, South Korea. Recognized mainly due to its ease of installation and reusability proves to be far more superior compared to other foundation types in terms of sustainability. This study applies modified p-y springs to characterize the behavior of a laterally loaded helical pile with a shaft diameter of 89.1 mm affixed with 3 helices evenly spaced along its embedded length of 2.5 m. Geotechnical soil properties are correlated from CPT data near the test bed vicinity and strain gauges mounted on the shaft surface. A modification factor is applied on the p-y springs to adjust the simulated data and match it to the bending moment, soil resistance and deflection values from the strain gauge measurements. The predicted lateral behavior of the helical pile through the numerical analysis method shows fairly good agreement to the recorded field test results.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF2021R1A6A1A1A03045185, Brain Korea 21 FOUR) and by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (Ministry of Trade, Industry & Energy) (No.20214000000180)..

References

  1. Abdrabbo, F.M. and El Wakil, A.Z. (2016), "Laterally loaded helical piles in sand", Alexandria Eng. J., 55(4), 3239-3245. https://doi.org/10.1016/j.aej.2016.08.020.
  2. AC358 (2007), Acceptance criteria for helical foundation systems and devices, ICC-ES (International Code Council-Evaluation Service).
  3. ASTM D3966 (2007), Standard test methods for deep foundations under lateral load. ASTM D3966. West Conshohocken, PA.
  4. Brown, M., Davidson, C., Brennan, A., Knappett, J., Cerfontaine, B. and Sharif, Y. (2019), "Physical modelling of screw piles for offshore wind energy foundations", Proceedings of the 1st International Symposium on Screw Piles for Energy Applications. Dundee, United Kingdom, May. https://doi.org/10.20933/382100001123.
  5. Cinicioglu, O. Sancak, E. (2020), "Selection of design friction angle: a strain based empirical method for coarse grained soils", Geomech. Eng., 20(2), 121-129. https://doi.org/10.12989/gae.2020.20.2.121.
  6. Dave, S. and Soni, M. (2019), "Model tests to determine lateral load capacity of helical piles embedded 384 in sand", Geotechnics for Transportation Infrastructure, 529-538. Lecture Notes in Civil 385 Engineering, vol 29. Springer, Singapore. https://doi.org/10.1007/978-981-13-6713-742.
  7. Elkasabgy, M. (2011), "Dynamic and static performance of large-capacity helical piles in cohesive soils", Ph.D. Dissertation, The University of Western Ontario, Canada.
  8. Elkasabgy, M. and El Naggar, M.H. (2019), "Lateral performance and p-y curves for large-capacity helical piles installed in clayey glacial deposit", J. Geotech. Geoenviron. Eng., 145(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002063.
  9. Hetenyi, M. (1946), "Beams on elastic foundation", Scientific Series, vol. XVI. Ann Arbor: The University of Michigan Press, University of Michigan Studies.
  10. Khari, M., Dehghanbandaki, A. and Armaghani, D.J. (2021), "Physical modelling of bending moments in single piles under combined loads in layered soil", Geomech. Eng., 25(5), 373-381. https://doi.org/10.12989/gae.2021. 25.5.373.
  11. Kim, H.K., Moon, J.S., An, J.W. and Michael, E.S. (2022), "Development of performance evaluation model for road and railway tunnels in use", Geomech. Eng., 29(3), 369-376. https://doi.org/10.12989/gae.2022.29.3.369.
  12. Kim, H.J., Reyes, J.V., Dinoy, P.R., Park, T.W., Kim, H.S. and Kim, J.Y., (2021), "Modified p-y curves to characterize the lateral behavior of helical piles", Geomech. Eng., 31(5), 505-518. https://doi.org/10.12989/gae.2022. 31.5.505.
  13. Li, Q. and Yang, Z. (2017), "p-y approach for laterally loaded piles in frozen silt", J. Geotech. Geoenviron. Eng., 143(5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001556.
  14. Lunne, T., Powell, J. and Robertson, P.K. (2002), Cone penetration testing in geotechnical practice. CRC Press.
  15. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceedings of the 2nd Offshore Technology Conference, Houston, Texas, 22-24 April 170.
  16. Matlock, H. and Reese, L.C. (1960), "Generalized solutions for laterally loaded piles", J. Soil Mech. Found. Div. Am. Soc. Civil Engineers, 86(5), 63-91. https://doi.org/10.1061/JSFEAQ.0000303
  17. Matlock, H., Ripperger, E.A. and Fitzgibbon, D.P. (1956), "Static and cyclic lateral-loading of an instrumented pile", Thompson Associates.
  18. Mittal, S., Ganjoo, B. and Shekhar, S. (2010), "Static equilibrium of screw anchor pile under lateral load in sands", Geotech. Geol. Eng., 28(5), 717-725. https://doi.org/10.1007/s10706-010-9342-4.
  19. Nip, D.C.N. and Ng, C.W.W. (2005), "Back-analysis of laterally loaded bored piles", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 158(2), 63-73. https://doi.org/10.1680/geng.2005.158.2.63.
  20. Prasad, Y.V. and Narasimha Rao, S. (1996), "Lateral capacity of helical piles in clays", J. Geotech. Eng., 122(11), 938-941. https://doi.org/10.1061/(ASCE)0733-9410(19 96)122:11(938).
  21. Puri, V.K., Stephenson, R.W., Dziedzic, E. and Goen, L. (1984), "Helical anchor piles under lateral loading", Laterally loaded deep foundations: Analysis and performance. ASTM International.
  22. Rathod, D., Muthukkumaran, K. and Sitharam, T.G. (2018), "Effect of slope on py curves for laterally loaded piles in soft clay", Geotech. Geol. Eng., 36(3), 1509-1524. https://doi.org/10.1007/s10706-017-0405-7.
  23. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of Laterally Loaded Piles in Sand", Paper No. OTC 2312, Proceedings of the 7th Offshore Technology Conference, Houston, Texas.
  24. Sakr, M. (2009), "Lateral resistance of helical piles in oil sands", Contemporary Topics in Deep 414 Foundations, 464-471. https://doi.org/10.1061/41021(335)58.
  25. Sakr, M. (2018), "Performance of laterally loaded helical piles in clayey soils established from field experience", DFI J. Deep Found. Inst., 12(1), 28-41. https://doi.org/10.1080/19375247.2018.1430481.
  26. Seo, M.J., Park, J.B., Lee, D. and Lee, J.S. (2022), "Load-settlement curve combining base and shaft resistance considering curing of cement paste", Geomech. Eng., 29(4), 407-420. https://doi.org/10.12989/gae.20 22.29.4.407.
  27. Sinha, R., Dave, S.P. and Singh, S.R. (2021), "Lateral performance of helical pile in cohesionless soil", In (Eds., Sitharam, T., Pallepati, R.R. and Kolathayar, S.) Seismic Design and Performance. Lecture Notes in Civil Engineering, 120. Springer, Singapore. https://doi.org/10.1007/978-981-33-4005334.
  28. Spagnoli, G. and Tsuha, C. (2020), "A review on the behavior of helical piles as a potential offshore foundation system", Mar. Georesour. Geotech., 38(9), 1013-1036. https://doi.org/10.1080/1064119X.2020.1729905.
  29. Vignesh, V. and Mayakrishnan, M. (2020), "Design parameters and behavior of helical piles in cohesive soils-A review", Arabian J. Geosci., 13(22), 1-14. https://doi.org/10.1007/s12517-020-06165-1.