• Title/Summary/Keyword: pile foundation construction

Search Result 247, Processing Time 0.025 seconds

Structural Modeling Experiments and Field Adaption Evaluation of Steel Cap for Performance Development of PHC Pile (PHC Pile 두부 성능개선을 위한 파일캡의 구조모델시험 및 현장 적용성 평가)

  • Kwon, Hyuk-Joon;An, Seon-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.630-633
    • /
    • 2006
  • In this study, we concerned the steel cap and head part arrangement of PHC pile structure to complement existing construction process which have the defects such as highly hazardous circumstance for safety concerns and retard a term of works. The steel cap developed for supplement the stiffness between extend foundation and contact section of PHC pile that is based on structural theory. The experiments have been performed to evaluate the characteristics of behavior between head part of PHC pile using steel cap and extend foundation.

  • PDF

Driveability Analysis of Non Welding Composite Pile (무용접 복합말뚝의 항타관입성 분석에 관한 연구)

  • Shin, Yun-Sup;Kim, Nam-Ho;Boo, Kyo-Tag;Lee, Jong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.729-737
    • /
    • 2008
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.

  • PDF

Measurements and analysis of load sharing between piles and raft in a pile foundation in clay

  • Watcharasawe, Kongpop;Jongpradist, Pornkasem;Kitiyodom, Pastsakorn;Matsumoto, Tatsunori
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.559-572
    • /
    • 2021
  • This research presents the monitoring results and their interpretation on load sharing of the pile foundation during the construction of a high-rise (124 m in height) building in Bangkok, in soft clayey ground. Axial forces in several piles, pore water pressure and earth pressures beneath the raft in a tributary area were monitored through the construction period of the building. The raft of the pile foundation in soft clayey ground can share the load up to 10-20% even though the foundation was designed using the conventional approach in which the raft resistance is ignored. The benefit from the return of ground water table as the uplift pressure is recognized. A series of parametric study by 3D-FEA were carried out. The potential of utilizing the piled raft system for the high-rise building with underground basement in soft clayey ground was preliminarily confirmed.

A Comparative Study of Skin Frictional Force through a Laboratory Model Test of Pile Filling Materials with Utilizing Circulating Resources (순환자원 활용 말뚝채움재의 실내모형시험을 통한 주면마찰력 비교 연구)

  • Song, Sang-Hwon;Jeong, Young-Soon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Rural multi-purpose buildings needs to ensure their safety against various disasters. Therefore, a pile foundation, which is a foundation type that can transmit the load of the structure to the bedrock layer, has been designed. The pile foundation method is largely divided into driving piles method and pre-bored pile method. Recently, in order to respond to the Noise and Vibration Control Act and related environmental complaints, construction of pile foundation adopts pre-bored pile method. The bearing capacity of the pre-bored pile method is calculated through a load test in situ. However, a disadvantage stems in that it is difficult to measure the ultimate bearing capacity due to field conditions. Therefore, in this study, the skin frictional force of pre-bored pile was measured through a model test in laboratory for each pile filling material. In result, the pile filling material with using circulating resources shows superior skin frictional force than ordinary portland cement. This study also judged that the result can be applied in place of ordinary Portland cement in the field.

Study on the Application of Press in Steel Pipe Pile for Restoring Building of different settlement (부동침하 건축물 복원을 위한 압입강관파일 공법 현장 적용에 관한 연구)

  • Sin, Jae-Kwon;Lee, Hee-Seok;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • Recently, As the high rise buildings have been demanded due to the rising current of land price, the permanent drainage method have been applied during and after the construction as a way to reduce the buoyancy acting on the bottoms of the foundations in the basement. This method has brought about the consolidation subsidence of the ground and turned out to be the problems of sinking hole and foundation re-settlement. The representative methods to be used for extending the life cycle of the existing building structure which is tilted by the foundation re-settlement or differential settlement of the foundation can be divided into the building structures reinforcement and soil reinforcement. The purpose of this study is to analyze and present the application example of steel pipe pile method to extend the life cycle of the six -stories building tilted in a soft ground.

  • PDF

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

Study of pile foundation using spiral pile (나선형 파일을 이용한 말뚝기초에 관한 연구)

  • Yoon, Young-Hwan;Kang, Si-On;Cho, Young-Dong;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.567-575
    • /
    • 2018
  • This study examined a pile foundation using a spiral pile. To maintain the structural safely, a foundation for connecting the ground and the ground structure is needed. On the other hand, noise and vibration, etc. cause problems when constructing a foundation on adjacent structures or urban areas. A study of the spiral foundation of a new shape with low vibration and noise was carried out to solve these problems. A study of pile foundations was carried out on a scaled model test and compared with the results of Meyerhof's bearing capacity theory. The scaled model test results showed that the bearing capacity increases with increasing pitch angle and length of the spiral pile. To verify the measured bearing capacity in a test with theoretical results, the bearing capacity of the actual spiral pile and scaled model pile were examined and compared. The ultimate bearing capacity of the spiral pile can be increased by increasing the foundation length and pitch angle. This study complements existing foundation construction problems and contributes to a better effect and safety.

Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-101
    • /
    • 2020
  • The construction of combined pile-raft foundations is considered as the main option in designing foundations in high-rise buildings, especially in soils close to the ground surface which do not have sufficient bearing capacity to withstand building loads. This paper deals with the geotechnical report of the Northern Fereshteh area of Tabriz, Iran, and compares the characteristics of the single pile foundation with the two foundations of pile group and geogrid. Besides, we investigate the effects of five principal parameters including pile diameter and length, the number of geogrid layers, the depth of groundwater level, and pore water pressure on vertical consolidation settlement and pore water pressure changes over a year. This study assessed the mechanism of the failure of the soil under the foundation using numerical analysis as well. Numerical analysis was performed using the two-dimensional finite element PLAXIS software. The results of fifty-four models indicate that the diameter of the pile tip, either as a pile group or as a single pile, did not have a significant effect on the reduction of the consolidation settlement in the soil in the Northern Fereshteh Street region. The optimum length for the pile in the Northern Fereshteh area is 12 meters, which is economically feasible. In addition, the construction of four-layered ten-meter-long geogrids at intervals of 1 meter beneath the deep foundation had a significant preventive impact on the consolidation settlement in clayey soils.

Centrifuge Tests on Compression Performance of Octagonal Concrete Filled Tube Column to be applied to Top-Down Construction Method (역타공법에 적용되는 팔각 콘크리트충전 강관의 압축성능을 위한 원심모형실험)

  • Kim, Dong-Kwan;Lee, Seung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.9-16
    • /
    • 2017
  • To improve concrete-filled tube (CFT) columns, an octagonal concrete-filled tube (OCFT) column was developed. Because the OCFT column requires a small boring diameter, the OCFT column is suitable for Top-Down construction method. In this study, the compression performance of OCFT column to be used as Top-Down pile foundation was verified using centrifuge equipment. Under 12 g centrifugal acceleration, the bearing capacities of the pile foundations of OCFT and H-shaped sections were tested. When the pile foundations were embedded in soil of full depth, 45 % of the design strength, which was assumed to be the construction load, was supported by the OCFT and H-shaped sections in the elastic states. When the pile foundations were embedded in soil of half depth, the buckling of the pile foundations was not investigated. After the loading test, the rock at the bottom of pile foundation, which had a strength of 3.5 MPa, was not damaged due to 45 % of the design strength.