• Title/Summary/Keyword: pile driving

Search Result 184, Processing Time 0.038 seconds

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

CASE STUDIES ON THE CONSTRUCTION CONTROL OF FILE FOUNDATION BY PILE DRIVING ANALYZER (항타분석기에 의한 말뚝시공관리 사례)

  • 이우진;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.79-86
    • /
    • 1994
  • Two case studies on the application of Pile Driving Analyzer (PDA) are introduced. It is shown that the PDA and CAPWAP are effective tools for the construction control of pile foundations with minimum cost and time. The PDA and CAPWAP techniques are able to evaluate the performace of hammer and driving system: to check the stresses in the pile due to driving: to determine the damage of pile: to predict the ultimate bearing capacity of pile: to estimate the important soil paramaters such as the soil resistance, quake, and damping etc.: and to provide the load - displacement curve from the simulated static load test. Theoretical backgrounds of wave mechanics is briefly reviewed and the methodology of construction control using the PDA is also discussed.

  • PDF

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

The Effect of Bearing Capacity Increasement for Driven Pile in Silt (실트지반에 타입된 말뚝의 지지력 증가효과)

  • Yeo, Byung Chul;Oh, Se Wook;Bae, Woo Seok;Ahn, Byung Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 2003
  • Recently, for the design of pile foundations on the soft ground condition, it is recognized that set-up effects are another important factor which influence the characteristics of bearing capacity of pile. In this paper, the thirteen dynamic pile loading tests were performed at the two different construction sites and the end of initial driving(EOID) were also performed and then restrike tests were performed after certain time lag. The H-pile, pipe pile, PHC pile are installed by driving into the loose silty soil and then restrike tests were performed. Nine days after pile driving, the bearing capacity of H and pipe pile were increased whereas there is not bearing capacity increasement with PHC pile. When the dense silty soil, the restrike test results showed that the bearing capacity of H and pipe pile increased up to 1.17 times. The 1-st and 2-nd restrike tests performed after 6 and 12 day, respectively. The results showed that the bearing capacity of PHC pile was decreased but the bearing capacity of piles were increased up to 1.38 times after 13 days with the third restrike test.

  • PDF

Investigation on Noise Characteristics of Pile Driving Operation and Design of a Low-noise Pile Cap Based on the Scale Model Experiment (항타공법에 의한 발생 소음 특성 분석 및 축소 모형 실험을 이용한 저소음 말뚝 캡의 설계)

  • 이종화;이정권;이기홍;정승창
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.445-448
    • /
    • 2001
  • Noise radiated from pile driving operation is one of major sources of community noise pollution and thus its operation method is strictly restricted by regulations. Although the drilling method is now used been commonly used in urban areas because of its activity, the benefit of low noise decreases due to high working cost. In the present work, noise characteristics of pile driving operation are carried out. Based on the study result, a low-noise pile cap for driven piles is developed in order to satisfy both the noise level restriction and the economical efficiency. Effects of pile cap are investigated by a scale model experiment, which is focused on the variation of impact force and sound pressure level. The results show a good possibility of noise reduction by an appropriately designed pile cap.

  • PDF

Performance evaluation of the lightweight concrete tapered piles under hammer impacts

  • Tavasoli, Omid;Ghazavi, Mahmoud
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Lightweight concrete (LWC) provides an attractive alternative to conventional piles by improving the durability of deep foundations. In this paper, the drivability of cylindrical and tapered piles made of lightweight and common concrete (CC) under hammer impacts was investigated by performing field tests and numerical analysis. The different concrete mixtures were considered to compare the mechanical properties of light aggregate which replaced instead of the natural aggregate. Driving tests were also conducted on different piles to determine how the pile material and geometric configurations affect driving performance. The results indicated that the tapering shape has an appropriate effect on the drivability of piles and although lower driving stresses are induced in the LWC tapered pile, their final penetration rate was more than that of CC cylindrical pile under hammer impact. Also by analyzing wave propagation in the different rods, it was concluded that the LWC piles with greater velocity than others had better performance in pile driving phenomena. Furthermore, LWC piles can be driven more easily into the ground than cylindrical concrete piles sometimes up to 50% lower hammer impacts and results in important energy saving.

Evaluation of Performance of a DPRMs by the Vibration Signal Analysis. (진동신호 분석을 통한 DPRMs의 성능평가)

  • Choi, Young-Sam;Shin, Chan-Ho;Chung, Jin-Tai;Han, Song-Soo;Lee, Sang-Heon;Lee, Kye-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.788-792
    • /
    • 2004
  • In this study, the performance of the DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. But the measurement errors of the DPRMs are caused by the strong impact for the pile driving. Therefore, the DPRMs should guarantee its measurement values for the pile driving. For this reason, the performance of the DPRMs by the vibration signal analysis is studied. It is found from this study that the measurement values of the DPRMs are reliable.

  • PDF

Structural Capacity of High Strength Steel Pipe Pile After Pile Driving (고강도 강관말뚝의 항타후 구조성능 분석)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.251-258
    • /
    • 2011
  • Steel pipe piles have been used as various deep foundation materials for a long time. Recent increase in steel material cost has made engineers reluctant in using it even with its good quality and ease of construction. Therefore when constructing with steel pipe pile, the decision to reuse the excessive pile length that is cut off from the designed pile head elevation after pile driving can be cost saving. This has caused many constructors to reuse the pile leftovers with new piles, but the absence of quantitative structural capacity behaviors of steel pipe pile after pile driving or appropriate countermeasures and standards in reusing steel pipe pile has resulted in wrong applications, pile structural integrity problems, inappropriate limitation of reusable pile length, etc. The structural performance analysis between a new pile and a pile that has undergone working state and ultimate state stress level during pile driving was performed in this research by means of comparing the results between the dynamic pile load test, tensile load test, charpy energy test and fatigue test for high strength steel of $440N/mm^2$ yield strength. Test results show that under working load conditions the yield strength variation is less than 2% and for ultimate load conditions the variation is less than 5% for maximum total blow count of 3000. The results have been statistically analyzed to check the sensitivity of each factors involved. From the test results, reusability of steel pipe pile lies not in the main pipe yield strength deviation but in the reduction of absorb energy, strength changes and quality control at the welded section, shape deformation and local buckling during pile driving.

Characteristics of Driving Efficiency and Bearing Capacity for Non-welded Long Steel Pipe Pile Method (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호;이상일;박진석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.381-388
    • /
    • 1999
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance by time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to work out the existing problems, and calibration chamber tests are peformed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new installation method has increase bearing capacity as well as reduce installation cost and period for long steel pipe piles as compared with existing methods.

  • PDF