• Title/Summary/Keyword: pile curing

Search Result 31, Processing Time 0.026 seconds

Engineering Properties of PHC Pile Considering Replacement Ratio of Ground Granulated Blast-Furnace Slag and Curing Conditions (고로슬래그 미분말의 치환율 및 양생조건을 고려한 PHC파일의 공학적 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.439-446
    • /
    • 2018
  • The PHC pile has been increasingly used due to its implementation of the top-base method, which is advantageous in high penetration rate and bearing capacity reinforcement. Typically, when a PHC pile is manufactured, high-strength mixed materials are mainly used to enhance the compressive strength. However, recent studies have been conducted to utilize ground granulated blast-furnace slag (GGBS) in terms of economic efficiency. For this reason, this study manufactured PHC pile considering the replacement ratio and curing conditions of GGBS instead of high-strength mixed materials, and further investigated the engineering properties of the PHC pile. According to the experimental results, the compressive strength of GGBS-replaced PHC pile increased by steam curing, and particularly, PHC pile with 20% replacement of GGBS under $80^{\circ}C$ steam curing condition showed a compressive strength of approximately 84MPa. Furthermore, the experimental results confirmed that more hydration products were generated under the $80^{\circ}C$ steam curing condition than that under the $20^{\circ}C$ steam curing condition, which would affect the higher density of the PHC pile as well as the increase in the compressive strength.

An Experimental Study on Manufactural Technics of PHC Pile Using Low Pressure Steam Curing Method (상압증기양생방식에 의한 PHC PILE의 제조기술 연구)

  • 김종흡;안상기;이동근;심흥섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.405-414
    • /
    • 1994
  • The High Strength Concrete REsearch Team of the Dong-Ah Construction R&D Institute has achieved the preactical use of the PHC pile manufacture technique at the Dong-Ah Chang-dong PC Plant. Components of the high strength concrete are used high strength cement, admixtures(water reducing high range admixture, micro silion fume, fly ash, gypsum). The design strength required 800kg/$\textrm{cm}^2$ was developed raging from 870kg/$\textrm{cm}^2$ to 1010kg/$\textrm{cm}^2$. The new manufacture procedure of HPC pile which include placing, molding, steam curing is able to apply a current PC pile manufacture procedure easily without using the high pressure steam curing.

  • PDF

Load-settlement curve combining base and shaft resistance considering curing of cement paste

  • Seo, Mi Jeong;Park, Jong-Bae;Lee, Dongsoo;Lee, Jong-Sub
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.407-420
    • /
    • 2022
  • Embedded piles, which are typically used in Korea, are precast piles inserted into prebored ground with cement paste. Dynamic pile tests tend to underestimate the bearing capacity of embedded piles because of the undeveloped shaft resistance prior to the curing of the cement paste and the insufficient energy transferred after the curing. In this study, a resistance combination method using the base resistance before the cement paste is cured and the shaft resistance after the cement paste is cured is proposed to obtain a combined load-settlement curve from dynamic pile tests. Two pairs of embedded piles with diameters of 600 and 500 mm are installed. Each pair comprises one pile for the dynamic pile test and another pile for the static load test. The shape of the load-settlement curve obtained using the proposed method is similar to that obtained from the static load test. Thus, the resistances evaluated using the proposed method at selected settlements are similar to those obtained from the static load test. This study shows that the resistance combination method may be used effectively in dynamic pile tests to accurately evaluate the bearing capacity of embedded piles.

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

AN EXPERIMENTAL STUDY ON THE PRODUCTION OF HIGH-STRENGTH CONCRETE PILE IN SITE (현장생산용 고강도 콘크리트 파일에 관한 실험적 연구)

  • 박칠림;권영호;백명종;이상수;정도순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.183-188
    • /
    • 1995
  • Up to date, high-strength concrete pile which is producing in factory sells in the market. But according to the site and the construction conditions, the system to produce high-strength concrete pile directly in site is utilized in advanced country. Such the production system is the technique phenomenon very disirable in the side of quality control in site and the construction schedule, the time and the cost saving. This study is a fundamental experiment including concrete mixing design, non-autoclave curing method and the optimum condition to produce high-strengh concrete pile in site. As results of this study, High-strength concrete pile in site which target strength is 400kg/ $\textrm{cm}^2$ is able to produce it with optimum curing ciondition(75$^{\circ}C$, 9hr)and mixing design.

  • PDF

A Study on Properties of the High-Strength Concrete Admixed with II-Anhydrite and Pozzolanic Fine Power (불산부생 II 형 무수석고와 포졸란 미분체가 혼입된 고강도콘크리트의 특성에 관한 연구)

  • 조민형;길배수;전진환;김도수;남재현;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.136-145
    • /
    • 1997
  • The purpose of this study is to develope of alternative adimixture for manufacture of PHC pile(compressive strength above 800kg/$\textrm{cm}^2$). For the investigation, properties of alternative admixture admixed with II-anhydrite and pozollanic fine powders(e.q., Fly-ash, Silica-Fume), the fluidity and viscosity in the cement pastes, the fluidity and compressive strength in mortars at steam curing condition, were respectively examined. Also, properties of compressive strength of concretes with exiting admixture(specimen name SM) and alterantive admixture(specimen name AP) for PHC pile, at steam and standard curing condition, were compared each other. As a result of this experimental study, it was found that specimens admixed with II-anhydrite and pozollanic fine powders had an increase on the fluidity of cement paste and mortar, and compressive strength of mortar and concrete was as good as concrete with SM.

  • PDF

Drivability and Bearing Capacity of PHC Pile Foundation (PHC 말뚝의 항타시공성 및 지지력에 관한 연구)

  • Lee, Myung Whan;Lee, In Mo;Kim, Sang Gyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.223-234
    • /
    • 1993
  • The main characteristics of PHC piles is that silica material and autoclave curing technique are used when manufacturing to have higher strength than PC piles. In this paper, pile drivability and bearing capacity characteristics of the PHC piles are studied through numerical analysis based on wave propagation theory, driving records and pile load tests in situ. It is found that we can have higher bearing capacity by using the PHC piles rather than the PC on condition that the most effective driving equipment is chosen when driving the pile. In other words, since the PHC piles have higher resistance to driving energy, the heavier ram can be used in the driving process, which results in the higher bearing capacity.

  • PDF

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Physico-Chemical Changes of Curing Compost from Food Wastes (음식쓰레기 1차 부숙퇴비의 숙성과정중 상태변화)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.166-169
    • /
    • 1997
  • The fresh food waste compost, which was composted in a small bin for average one month, was cured in a pile in the field for seven months. The pile was turned once a month. The various components of the compost were investigated for the curing period. The maximun temperature rised to $65^{\circ}C$ after curing of four months. The moisture content of the compost droped to 61.7% after twelve months. After that, the rainfall affected very much the moisture content of the compost. pH of the compost increased gradually to 8.92 for curing. Ash content rised continually to 60.5% for curing. However, it did not exceed 25% ash content, which is the by-product limit value. The accumulation of the inorganic components occured and most of the heavy matals except for Cd generally were accumulated as curing proceeded.

  • PDF