• Title/Summary/Keyword: pile boundary condition

Search Result 34, Processing Time 0.03 seconds

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency (지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구)

  • Kim, Pyoung-Hwa;Kang, Sung-Yong;Lee, Yun-Woo;Kang, Young-jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.734-742
    • /
    • 2016
  • Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

Development of Non-Destrutive Pile Soundness Test Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave) 방법을 사용한 말뚝기초의 비파괴 건전도 평가방법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.13-23
    • /
    • 2008
  • The evaluation of soundness of pile is very important for the safety of super structure. In this paper, the HWAW(Harmonic Wavelet Analysis of Wave) method which is developed to determine phase and group velocities of waves is applied to evaluate integrity of pile non-destructivly. The proposed method can evaluate a soundness of pile and pile end condition which is very important factor for pile behaviour. To verity the applicability of HWAW method in non-destructive test for pile, the numerical simulation test using ABAQUS was performed. And the model pile was made and the proposed non-destructive pile tests were applied to evaluate soundness and end boundary condition of model pile in the air and soil box. Through a numerical simulation and model tests, it is shown that the HWAW method has good potential of applying to the evaluation of pile integrity.

A novel approach for predicting lateral displacement caused by pile installation

  • Li, Chao;Zou, Jin-feng;Li, Lin
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.

A Forced Vibration Analysis of Soil-Pile Interaction System (지반-말뚝 상호작용계의 강제진동해석)

  • 김민규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.136-143
    • /
    • 2001
  • In this study, a numerical analysis for soil-pile interaction systems in multi-layered half planes under a forced vibration is presented. The soil-pile interaction system is divided into two parts, so called near field and far field. The near field soil using finite elements and piles using beam elements are modeled. The far field soil media is implemented using boundary elements those can automatically satisfy the condition of wave radiation. These two fields are numerically coupled by imposing displacement compatibility condition at the interface between the near field and the far field. For the verification, the forced vibration test was simulated and the response under horizontal and vertical harmonic loads at the pile cap in the layered half plane was determined. The results are compared to the theoretical and experimental results of the literatures to verify the proposed soil-pile interaction analysis formulation.

  • PDF

Relationship between Contact Resistance and Tribological Behavior in Boundary Lubrication (경계윤활에서 접촉 저항과 트라이볼로지 특성의 상관 관계에 관한 연구)

  • 이홍철;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.76-83
    • /
    • 2000
  • Boundary lubrication condition arises in most lubricated systems, especially during motion reversals and start up phase of operation. In this work electric contact resistance variations with respect to sliding conditions under lubrication is investigated The motivation was to improve the understanding of the contact condition in the boundary lubrication regime. It is shown that electrical contact resistance is sensitive to sliding speed and surface condition of the specimens. Also, phenomena such as run-in during the initial phase of sliding and lubricant pile up near the sliding pin could be observed. The results of this work will aid in better understanding of the metal to metal contact condition in lubricated systems.

  • PDF

Relationship between Contact Resistance and Tribological Behavior in Boundary Lubrication (경계윤활에서 접촉 저항과 트라이볼로지 특성의 상관 관계에 관한 연구)

  • 이홍철;김대은
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.381-388
    • /
    • 2000
  • Boundary lubrication condition arises in most lubricated systems, especially during motion reversals and start up phase of operation. In this work electric contact resistance variations with respect to sliding conditions under lubrication is investigated. The motivation was to improve the understanding of the contact condition in the boundary lubrication regime. It is shown that electrical contact resistance is sensitive to sliding speed and surface condition of the specimens. Also, phenomena such as run-in during the initial phase of sliding and lubricant pile up near the sliding pin could be observed. The results of this work will aid in better understanding of the metal to metal contact condition in lubricated systems.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Model (Flow-3D 모형을 이용한 해상풍력기초 세굴현상 분석)

  • Park, Young-Jin;Kim, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.690-696
    • /
    • 2017
  • Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition (지반조건에 따른 말뚝의 인발저항 평가를 위한 말뚝-지반 경계면 강도감소계수 고찰)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2019
  • This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{inter}$) on pile-soil interface were applied to simulate appropriately the shear behavior at the pile-soil interface, and then the reliability of numerical analysis method was verified by comparison of FEA results and previous experimental research(You et al., 2018). In addition, a the deformation characteristics at the pile-soil interface and determination method of $R_{inter}$ value was laid out. The results showed that the FEA, based on the analytical model applied in this study simulates appropriately the characteristics of the pile-soil interface by pullout model test of pile. In order to apply the suggested $R_{inter}$ value, it is necessary to consider the condition of the relative density and the fines content in ground.