• 제목/요약/키워드: pigmented human skin model

검색결과 3건 처리시간 0.019초

미백 기능성 화장품 원료의 유효성 평가를 위한 In Vitro 색소화피부모델 개발 (Development of an In Vitro Pigmented Skin Model to Evaluate the Effectiveness of Whitening Functional Cosmetic Ingredients)

  • 김설영;이건희;곽은지;김수지;이수현;임경민
    • 대한화장품학회지
    • /
    • 제47권4호
    • /
    • pp.297-304
    • /
    • 2021
  • 본 연구에서는 미백 기능성 화장품 및 원료의 효능을 평가하는 동물대체시험법을 개발하기 위하여 세포수준과 색소화피부모델(KeraSkin-MTM)에서 기존에 잘 알려진 4종의 미백기능성원료(arbutin, ascorbic acid, kojic acid, niacinamide)의 효능을 평가하였다. 특히 기존 시험법의 보완을 위해 인체피부유래 케라틴세포와 멜라닌세포를 혼합하고 공배양하여 색소화피부모델을 제작하였다. 그 결과 색소화피부모델을 이용하여 미백효능을 평가함으로써 세포수준에서는 확인이 어려웠던 각 피부세포층에 따른 멜라닌 과립과 멜라닌캡(melanin cap)의 분포 등의 지표들을 추가로 확인할 수 있었으며 이미지분석을 통한 정량화로 음성대조군 대비 통계적 유의성을 확인할 수 있었다. 이러한 결과는 KeraSkin-MTM을 이용한 미백효능평가법이 기존에 사용하던 총멜라닌함량와 타이로시나아제 저해 평가를 보완할 수 있는 새로운 평가법으로 사용할 수 있음을 시사한다.

The Inhibition of Melanogenesis Via the PKA and ERK Signaling Pathways by Chlamydomonas reinhardtii Extract in B16F10 Melanoma Cells and Artificial Human Skin Equivalents

  • Lee, Ayeong;Kim, Ji Yea;Heo, Jina;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2121-2132
    • /
    • 2018
  • Abnormal melanin synthesis results in several hyperpigmentary disorders such as freckles, melanoderma, age spots, and other related conditions. In this study, we investigated the anti-melanogenic effects of an extract from the microalgae Chlamydomonas reinhardtii (CE) and potential mechanisms responsible for its inhibitory effect in B16F10, normal human epidermal melanocyte cells, and human skin-equivalent models. The CE extract showed significant dose-dependent inhibitory effects on ${\alpha}$-melanocyte-stimulating, hormone-induced melanin synthesis in cells. Additionally, the CE extract exhibited suppressive effects on the mRNA and protein expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. The CE extract also inhibited the phosphorylation of protein kinase A and extracellular signal-related kinase, which function as upstream regulators of melanogenesis. Using a three-dimensional, reconstructed pigmented epidermis model, the CE-mediated, anti-pigmentation effects were confirmed by Fontana-Masson staining and melanin content assays. Taken together, CE extract can be used as an anti-pigmentation agent.

Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities

  • Kim, Kyuri;Jeong, Hae-In;Yang, Inho;Nam, Sang-Jip;Lim, Kyung-Min
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.98-107
    • /
    • 2021
  • Background: Ginseng extracts and ginseng-fermented products are widely used as functional cosmetic ingredients for their whitening and antiwrinkle effects. Recently, increasing attention has been given to bioactive metabolites isolated from endophytic fungi. However, little is known about the bioactive metabolites of the fungi associated with Panax ginseng Meyer. Methods: An endophytic fungus, Penicillium sp. SNF123 was isolated from the root of P. ginseng, from which acremonidin E was purified. Acremonidin E was tested on melanin synthesis in the murine melanoma cell line B16F10, in the human melanoma cell line MNT-1, and in a pigmented 3D-human skin model, Melanoderm. Results: Acremonidin E reduced melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells with minimal cytotoxicity. qRT-PCR analysis demonstrated that acremonidin E downregulated melanogenic genes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), while their enzymatic activities were unaffected. The antimelanogenic effects of acremonidin E were further confirmed in MNT-1 and a pigmented 3D human epidermal skin model, Melanoderm. Immunohistological examination of the Melanoderm further confirmed the regression of both melanin synthesis and melanocyte activation in the treated tissue. Conclusion: This study demonstrates that acremonidin E, a bioactive metabolite derived from a fungal endophyte of P. ginseng, can inhibit melanin synthesis by downregulating tyrosinase, illuminating the potential utility of microorganisms associated with P. ginseng for cosmetic ingredients.