Browse > Article
http://dx.doi.org/10.4014/jmb.1810.10008

The Inhibition of Melanogenesis Via the PKA and ERK Signaling Pathways by Chlamydomonas reinhardtii Extract in B16F10 Melanoma Cells and Artificial Human Skin Equivalents  

Lee, Ayeong (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)
Kim, Ji Yea (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)
Heo, Jina (Sustainable Bioresource Research Center, KRIBB)
Cho, Dae-Hyun (Sustainable Bioresource Research Center, KRIBB)
Kim, Hee-Sik (Sustainable Bioresource Research Center, KRIBB)
An, In-Sook (Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation)
An, Sungkwan (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)
Bae, Seunghee (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2121-2132 More about this Journal
Abstract
Abnormal melanin synthesis results in several hyperpigmentary disorders such as freckles, melanoderma, age spots, and other related conditions. In this study, we investigated the anti-melanogenic effects of an extract from the microalgae Chlamydomonas reinhardtii (CE) and potential mechanisms responsible for its inhibitory effect in B16F10, normal human epidermal melanocyte cells, and human skin-equivalent models. The CE extract showed significant dose-dependent inhibitory effects on ${\alpha}$-melanocyte-stimulating, hormone-induced melanin synthesis in cells. Additionally, the CE extract exhibited suppressive effects on the mRNA and protein expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. The CE extract also inhibited the phosphorylation of protein kinase A and extracellular signal-related kinase, which function as upstream regulators of melanogenesis. Using a three-dimensional, reconstructed pigmented epidermis model, the CE-mediated, anti-pigmentation effects were confirmed by Fontana-Masson staining and melanin content assays. Taken together, CE extract can be used as an anti-pigmentation agent.
Keywords
Chlamydomonas reinhardtii; anti-pigmentation; cell culture; human skin equivalents; melanin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Guedes AC, Amaro HM, M alcata FX. 2011. Microalgae as sources of carotenoids. Marine Drugs 9: 625-644.   DOI
2 Lee JJ, An S, Kim KB, Heo J, Cho DH, Oh HM, et al. 2016. Extract of Ettlia sp. YC001 exerts photoprotective effects against UVB irradiation in normal human dermal fibroblasts. J. Microbiol. Biotechnol. 26: 775-783.   DOI
3 Heo J, Shin D-S, Cho K, Cho D-H, Lee YJ, Kim H-S. 2018. Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res. 33: 1-7.   DOI
4 D'Mello S, Finlay G, Baguley B, Askarian-Amiri M. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17: E1144.   DOI
5 Shimoda H, Tanaka J, Shan SJ, Maoka T. 2010. Antipigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J. Pharm. Pharmacol. 62: 1137-1145.   DOI
6 Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, et al. 2009. Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp. Dermatol. 18: 222-231.   DOI
7 Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. 2003. UV-induced skin damage. Toxicology 189: 21-39.   DOI
8 Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488.   DOI
9 Dai J, Mumper RJ. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352.   DOI
10 Rasouli H, Farzaei MH, Khodarahmi R. 2017. Polyphenols and their benefits: a review. Int. J. Food Prop. 20: 1700-1741.   DOI
11 Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. 2016. Skin whitening cosmetics: feedback and challenges in the development of natural skin lighteners. Cosmetics 3: 36.   DOI
12 Chang T-S. 2009. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10: 2440-2475.   DOI
13 Baek Sh, Lee SH. 2015. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Exp. Dermatol. 24: 761-766.   DOI
14 Hartman ML, Czyz M. 2015. MITF in melanoma: mechanisms behind its expression and activity. Cell. Mol. Life Sci. 72: 1249-1260.   DOI
15 Jiang Z, Li S, Liu Y, Deng P, Huang J, He G. 2011. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway. Acta Biochim. Biophys. Sin. 43: 763-770.   DOI
16 Bae-Harboe YS, Park HY. 2012. Tyrosinase: a central regulatory protein for cutaneous pigmentation. J. Invest. Dermatol. 132: 2678-2680.   DOI
17 Roh E, Yun C-Y, Yun JY, Park D, Kim ND, Hwang BY, et al. 2013. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. J. Invest. Dermatol. 133: 1072-1079.   DOI
18 Yun C-Y, Ko SM, Choi YP, Kim BJ, Lee J, Kim JM, et al. 2018. ${\alpha}$-Viniferin improves facial hyperpigmentation via accelerating feedback termination of cAMP/PKA-signaled phosphorylation circuit in facultative melanogenesis. Theranostics 8: 2031-2043.   DOI
19 Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. 1998. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391: 298-301.   DOI
20 Wasmeier C, Hume AN, Bolasco G, Seabra MC. 2008. Melanosomes at a glance. J. Cell Sci. 121: 3995-3999.   DOI
21 Slominski A, Tobin DJ, Shibahara S, Wortsman J. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84: 1155-1228.   DOI
22 Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, et al. 2012. Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol. Cancer Res. 10: 778-786.   DOI
23 Yoon TJ, Lei TC, Yamaguchi Y, Batzer J, Wolber R, Hearing VJ. 2003. Reconstituted 3-dimensional human skin of various ethnic origins as an in vitro model for studies of pigmentation. Anal. Biochem. 318: 260-269.   DOI
24 Ye Y, Wang H, Chu JH, Chou GX, Yu ZL. 2011. Activation of p38 MAPK pathway contributes to the melanogenic property of apigenin in B16 cells. Exp. Dermatol. 20: 755-757.   DOI
25 Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, et al. 2006. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 19: 595-605.   DOI
26 Yanase H, Ando H, Horikawa M, Watanabe M, Mori T, Matsuda N. 2001. Possible involvement of ERK 1/2 in UVAinduced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res. 14: 103-109.   DOI
27 Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. 1995. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270: 24315-24320.   DOI
28 Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. 2003. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci. 116: 1699-1706.   DOI
29 Kandarova H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, et al. 2006. Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol. In Vitro 20: 547-559.   DOI
30 Kidd DA, Johnson M, Clements J. 2007. Development of an in vitro corrosion/irritation prediction assay using the EpiDerm skin model. Toxicol. In Vitro 21: 1292-1297.   DOI
31 Imokawa G, Yada Y, Kimura M. 1996. Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem. J. 314 (Pt 1): 305-312.   DOI
32 Chan C-F, Huang C-C, Lee M-Y, Lin Y-S. 2014. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 19: 13122-13135.   DOI
33 Passeron T, Mantoux F, Ortonne JP. 2005. Genetic d isorders of pigmentation. Clin. Dermatol. 23: 56-67.   DOI
34 Schallreuter KU, Kothari S, Chavan B, Spencer JD. 2008. Regulation of melanogenesis--controversies and new concepts. Exp. Dermatol. 17: 395-404.   DOI
35 Naish-Byfield S, Riley PA. 1998. Tyrosinase kinetics: failure of acceleration in oxidation of ring-blocked monohydric phenol substrate. Pigment Cell Res. 11: 94-97.   DOI
36 Bentley NJ, Eisen T, Goding CR. 1994. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14: 7996-8006.   DOI
37 Bonaventure J, Domingues MJ, Larue L. 2013. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26: 316-325.   DOI
38 Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K, Saito H, et al. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13 (Suppl) 8: 98-102.   DOI
39 Wang HM, Chen CC, Huynh P, Chang JS. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184: 355-362.   DOI
40 Zhao X, Xue C-H, Li Z-J, Cai Y-P, Liu H-Y, Qi H-T. 2004. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J. Appl. Phycol. 16: 111-115.   DOI
41 Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng. 78: 731-740.   DOI