• Title/Summary/Keyword: piggery waste

Search Result 35, Processing Time 0.026 seconds

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

Study on Characteristics of Piggery Waste and Processing Sludge for Reuse (재활용을 위한 양돈폐수와 공정슬러지의 특성연구)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.308-313
    • /
    • 2006
  • Charicteristics of piggery waste and treatment processing sludges for reuse were investigated. If it was thoroughly regulated in disinfectants, antibiotic substances and heavy metals, raw piggery waste can be gratified in criteria for fermentative compost (liquid) for flowers cultivation. Also, Because it is satisfied with various criteria of heavy metals and fertilizer contents for reuse except water content, primary pre-treatment sludge is very good material for composting. If provated goods on heavy metals are used in coagulation & dewatering process, coagulation & dewatering sludges are suitable for criteria of special waste regulation and by-product compost. This study proves that, if they are accomplished with suitable composting and mature process, piggery waste and processing sludges are free from microbiological problems as well as criteria of composting.

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.

Anaerobic Treatment of Piggery Slurry - Review -

  • Chynoweth, D.P.;Wilkie, A.C.;Owens, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.607-628
    • /
    • 1999
  • The swine waste industry is growing rapidly along with the world human population. The trend is toward more concentrated piggeries with numbers of herds in the thousands. Associated with these increased herds are large quantities of wastes, including organic matter, inorganic nutrients, and gaseous emissions. The trend in swine waste management is toward treatment of these wastes to minimize negative impact on the health and comfort of workers and animals and the atmosphere, water, and soil environments. Treatment of these wastes has traditionally involved land application, lagoons, oxidation ditches, and conventional batch and continuously stirred reactor designs. More sophisticated treatment systems are being implemented, involving advanced anaerobic digester designs, integrated with solids separation, aerobic polishing of digester effluents, and biological nutrient removal. This review discusses the present and future role of anaerobic processes in piggery waste treatment with emphasis on reactor design, operating and performance parameters, and effluent processing.

Soil Adsorption Characteristics of Heavy Metals and Antibiotics in Piggery Waste Fertilizer (양돈 퇴, 액비 내 중금속 및 항생제의 토양 흡착특성 연구)

  • Oa, Seong Wook
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.365-374
    • /
    • 2012
  • Due to the wide use of feed additives on pig farms, large content of heavy metals and antibiotics have been found in piggery wastes. More than 90 % of piggery wastes were applied to crop field in Korea. The metals and antibiotics originated from piggery waste in the soil may affect plant growth and human health. To examine the adsorption capacity and residual ratio of heavy metals and antibiotics to the soil, a couple of jar test and leaching tests were conducted. While 86.4 % of zinc and 68% of copper applied were adsorbed to soil particles, while over than 60% of antibiotics in pig manure liquid fertilizer were leaked out to effluent.

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

  • Yoon, Young-Man;Kim, Seung-Hwan;Shin, Kook-Sik;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.600-607
    • /
    • 2014
  • The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Two-stage anaerobic biogas plant using piggery wastewater (축산분뇨를 이용한 바이오가스 플랜트)

  • Park, Hyung-Wan;Lee, Hyun-Sang;Park, Kyung-Ho;Kim, Keum-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.251-255
    • /
    • 2008
  • Biogas plant was started in 2007 for the purpose of treatment of $20m^3$/d of wastewater from piggery farm, biogas-production and electricity generation during treatment of the wastewater. The biogas plant is consists of two anaerobic digesters, gas holder and 60 kWe generator. $62,287m^3$ of biogas was produced and 74,745kWh electricity was generated by using the biogas after commencing the biogas plant.

  • PDF