• Title/Summary/Keyword: pig follicular oocytes

Search Result 44, Processing Time 0.027 seconds

The Present Situation and Problems of In Vitro Fertilization in Swine (돼지 체외수정의 현황과 문제점)

  • 류일선
    • Journal of Embryo Transfer
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 1992
  • 1. In vitro system, LR and FSR accelerated and facilitated meiotic progression, and LH selectively improved cytoplasmic maturation which is required to promote the formation of a male pronucleus. 2. Caffeine (2mM) in the fetilization medium was required not only for inducing zona penetrating ability of boar also for developing to the male pronucleus of the penetrat- ing spermatozoa in vitro. 3. The germinal vesicle (GV)stage was observed for the first 17.6 hr;germinal vesicle break-down (GVBD)stage between 17.6~26.4 hr ;metaphase I (M-I)from 26.4 - 30. 9hr;anaphase I(A-I)ranged from 30. 9~33.4hr;telophase I(T-I) at 33.4~34.4hr; and metaphase II(M-II) at 34.4-48hr. 4. The addition of 10%(v /v) pig follicular fluid (pFF) to maturation media significantly increased the rate of nuclear maturation of pig oocytes (p<0.01), whereas the rate of nuclear maturation of pig oocytes among three different media did not differ. 5. The presence of a primary culture of POEC promotes in vitro development of early cleavage stage pig embryos.

  • PDF

Effects of lipopolysaccharides on the maturation of pig oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Lee, Sang-Myeong;Heo, Jung-Min
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • Bacterial infections in the female reproductive tract negatively affect ovarian function, follicular development, and embryo development, leading to the eventual failure of fertilization. Moreover, bacterial lipopolysaccharides (LPS) can interfere with the immune system and reproductive system of the host animal. Therefore, this study examined the effect of LPS on the in vitro maturation (IVM) of pig oocytes. Oocytes were matured in TCM199 medium in the presence of varying concentrations of LPS (0 - 50 ㎍·mL-1). The maturation rate, cortical granules (CGs) migration, and chromosome alignment were subsequently evaluated during the meiotic development of the oocytes. We observed a dose-dependent and significant decrease in the metaphase II (MII) rate with increasing concentrations of LPS (97.6% control [0 ㎍·mL-1 LPS] vs. 10.4-74.9% LPS [1 - 50 ㎍·mL-1], p < 0.05). In addition, compared to the control oocytes without LPS, higher levels of abnormal CGs distribution (18.1 - 50.0% LPS vs. 0% control), chromosome/spindle alignment (20.3 - 56.7% LPS vs. 0% control), and intracellular ROS generation were observed in oocytes matured with LPS (p < 0.05). Nitrite levels were also increased in the maturation medium derived from the oocytes matured with LPS (p < 0.05). These results indicate that LPS induces oxidative stress during IVM and affects oocyte maturation, including CGs migration and chromosome alignment of pig oocytes.

Iozyme Patterns of Lactate Dehydrogenase in Follicular Components (돼지체조직 및 난포구성분에 있어 Lactate Dehydrogenase Isozyme 양식)

  • 이중한;변태호;유형진;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.3
    • /
    • pp.257-262
    • /
    • 1993
  • Various tissue and follicular components were analyzed for the determination of lactate dehydrogenase(LDH) isozyme patterns by electrophoretic technique with chromogen reaction in the pig. Optimum conditions for the tissue homogenate and the storage were finally established. Small quantities of follicular components were analysed for typing of LDH isozymes by microelectrophoresis. Microelectrophoretic analysis showed that only LDH-1 was visible in the oocytes, all isozymes in cumulus masses, and LDH-1, 2 and 3 in follicular fluid. The results provide critical information on the LDH activity of various tissues and follicular components. Furthermore, t he developed methods should be useful the analysis of LDH in the small quantity of samples, especially in the oocyte, and easily applicable to the oocyte and early embryos of other domestic species.

  • PDF

A Comparative Study on the Parthenogenetic Development of Pig Oocytes Cultured in North Carolina State University-23 and Porcine Zygote Medium-3

  • Lee, Joo-Hyeong;Hyun, Sang-Hwan;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • The objective of this study was to examine the effect of in vitro culture media on embryonic development of in vitro-matured (IVM) oocytes after parthenogenetic activation (PA) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 22~26 h. IVM oocytes were activated by electric pulses and cultured in porcine zygote medium-3 (PZM-3) and North Carolina State University-23 supplemented with essential and non-essential amino acids (NCSU-23aa). These media were further modified by supplementing 2.77 mM myo-inositol, 0.34 mM trisodium citrate, and $10{\mu}M$ ${\beta}$-mercaptoethanol (designated as mPZM-3 and mNCSU-23aa, respectively). Culture of PA embryos in mPZM-3 significantly increased development to the blastocyst stage than culture in NCSU-23aa (36.2% vs. 24.8%, p<0.05). Modified PZM-3 showed a significantly higher blastocyst formation than NCSU-23aa in both groups of embryos that were activated at 44 h and 48 h of IVM (51.0% vs. 35.5% and 49.0% vs. 34.2% in oocytes activated at 44 h and 48 h of IVM, respectively). Irrespective of the follicle diameter where oocytes were collected, embryonic development to the blastocyst stage was increased (p<0.05) by the culture in mPZM-3 compared to culture in NCSU-23aa (25.9% vs. 34.2% and 32.9% vs. 44.8% in embryos derived from small and medium size follicles, respectively). Our results demonstrated that culture media had significant effect on preimplantation development PA embryos and that mPZM-3 was superior to mNCSU-23 in supporting development to the blastocyst stage in pigs. This beneficial effect of mPZM-3 on embryonic development was not impaired by other factors such as time of oocyte activation and origin of immature oocytes (small and medium size follicles).

Early Development of Parthenogenetically Activated Porcine Oocyte after In Vitro Maturation for Various Periods (난자성숙시간에 따른 처녀발생유기 돼지난자의 초기발생)

  • Kim, S. B.;Lee, H.;Byun, T. H.;Jeon, J. T.;Lee, S. H.;Song, H. B.
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.117-125
    • /
    • 1994
  • In vitro development of parthenogenetic embryo was examined after ethanol treatment of follicular oocytes matured in vitro for 42, 48, 54 and 60h in the pig. The follicular oocytes were matured in TCM 199 containing 15% FCS and gonadotrophins in an atmosphere of 39 $^{\circ}C$ 5% $CO_2$. The cumulus-free oocytes were activated by 10% ethanol treatment in M2+4mg /ml BSA for 10 min. The ethanol-activated oocytes were washed and further cultured in TCM199+20%FCS containing granulosa cell monolayer. Maturation rates at 42, 48, 54 and 60h of IVM were 75.0, 86.5, 81.6 and 87.9%, respectively. Thus the oocytes maturated in vitro for longer periods did not improve nuclear maturation much. Pronuclear formation rates at 18h post-activation in ethanol-activated oocytes were 21.9, 25.0, 47.4 and 32.6%. The cytoplasmic maturation leading to pronuclear formation upon activation increased when the I VM period was extended from 42 to 54h. When the activated oocytes were cultured for 96~120h to analyse early development of the activated oocytes, the rates of embryonic development upto $\leq$ 5~8 cell were 5.3, 5.8, 12.0 and 11.7% among the cultured embryos. The result indicate that earlier development of activated porcine occyte is dependent on the duration of oocyte maturation, and that better development could be obtained from the oocyte matured for 54h.

  • PDF

Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles (돼지에서 난자의 체외발육 배양액 내 첨가된 거대분자물질이 작은 난포 유래 미성숙 난자의 성장, 성숙 및 배 발육에 미치는 영향)

  • Lee, Hanna;Lee, Yongjin;Lee, Joohyeong;Lee, Geun-Shik;Lee, Seung Tae;Lee, Eunsong
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF ($113.0-114.8{\mu}m$) were significantly larger than that of no IVG-SAF ($111.8{\mu}m$). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.

Use of a Xanthine-Xanthine Oxidase System on In Vitro Maturation and Fertilization in Pig

  • Sa, S.J.;Park, C.K.;Cheong, H.T.;Yang, B.K.;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.13-13
    • /
    • 2001
  • This study was undertaken to evaluate the effects of catalase using xanthine (X) - xanthine oxidase (XO) system on in vitro maturation and fertilization in pig. When follicular oocytes were cultured in maturation medium with X and/or XO, the maturation rates were not significantly different between in medium with and without catalase despite of different culture periods. However, significantly (P<0.05) higher maturation rates were obrained in culture with X-XO system. The rates of degenerated oocytes were increased with culture periods prolonged, and were significantly (P<0.05) higher in medium without than with catalase at 120 h of culture. On the other hand, the parthenogenetic oocytes were observed with high proportions at 72 h of culture, hut were not different in medium with and without catalase at various times of culture. In another experiment, the frozen-thawed boar spermatozoa treated with X-XO system for in vitro fertilization. The penetration rates were higher in medium with that than without catalase during the in vitro fertilization with, none (P<0.05), XO and X+XO. On the other hand, when sperm were treated with none, X, XO and X+XO, lipid peroxidation were higher in medium without that than with catalase. However, the changes in sperm penetration and lipid peroxidation showed opposite patterns. The sperm suspensions were also treated with X and/or XO for assay of sulfhydryl (-SH) group content. Under the above all conditions, sperm-SH group were higher detected In medium with that than without catalase. The activity of sperm binding to zona pellucida was also evaluated through binding to salt-stored porcine oocytes. In control group, sperm binding to zona pellucida were higher than in medium with X, XO and X+XO groups. No significant differences, however, were observed between medium with and without catalase. In conclusion, the exposure of follicular oocytes and spermatozoa to X-XO system may be caused stimulating in vitro maturation and fertilization in pig. This work was supported by grant No. 2000-1-22200-001-3 from the Basic Research Program of the Korea Science & Engineering Foundation.

  • PDF

Effect of Thymidine on $In$ $Vitro$ Maturation of Immature Porcine Follicular Oocytes (돼지 미성숙 난포란의 체외성숙에 미치는 Thymidine 처리 효과)

  • Min, Sung-Hun;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study was to examine the effect of thymidine treatment during $in$ $vitro$ maturation (IVM) of porcine follicular oocytes on blastocyst development. Porcine oocytes were treated with thymidine (10 mM, 20 mM and 30 mM) for 2 or 6 hr in the preiods of IVM I and/or II. The survival rates of the blastocysts in the 6 hr treatment groups of 10 mM and 20 mM during IVM I period were significantly higher than those of control group ($p$<0.05). However, the survival rate of the blastocysts in the 2 hr treatment group of 20 mM during IVM II period was significantly higher than control group ($p$<0.05). Furthermore, the survival rate of the blastocysts in the 6 hr treatment group of 30 mM during IVM II period was significantly lower than control group ($p$<0.05). Consistent with the previous result, blastocyst development of both IVM I and II treatment group was also showed as similar pattern. Total and apoptotic cell numbers of blastocysts derived from thymidine treated porcine oocytes were examined by using Tunel assay. The results showed that there was no significant differences in total cell number of blastocysts between thymidine treated and untreated groups. However, apoptosis-positive cells in the thymidine treated group (6 hr IVM I) were significantly lower than those of other groups ($p$<0.05). Taken together, these results indicate that high quality oocytes were selected by DNA synthesis mechanism according to high concentration thymidine treatment during porcine oocyte maturation. Therefore, we concluded that presumptive selected oocytes by thymidine treatment during maturation periods improved the further embryo development and embryonic quality of IVF embryos by decreasing the incidence of apoptosis in preimplantation porcine embryos.

Effects of Cumulus Cells and Follicular Fluid on Plasminogen Activator Activity during In Vitro Maturation of Porcine Oocytes

  • Ann Ji-Young;Sa Soo-Jin;Cao Yang;Lee Sang-Young;Cheon Hee-Tae;Yang Boo-Keun;Park Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • The present study was conducted to investigate the effects of cumulus cells and porcine follicular fluid (pFF) on plasminogen activator (PA) activity and oocytes maturation in vitro in the pig. The cumulus-oocyte complexes (COCs) and denuded oocytes (DOs) were incubated in NCSU-23 medium with or without 10% pFF for 0, 24, or 48 hr. In the presence of cumulus cells, the proportions of oocytes matured to metaphase-II stage were significantly (P<0.05) higher in medium with pFF than without pFF (69.8 vs. 37.7%, respectively). When COCs and DOs were cultured in the presence of pFF, tissue-type PA (tPA), urokinase-type PA (uPA), and tPA-PA inhibitor (tPA-PAI) were observed in COCs, and PA activities were higher at 48 hr than 24 hr. When COCs and DOs were cultured in the absence of pFF, tPA and tPA-PAI were observed in COCs, and PA activities were increased as duration of culture increased. No PA activities were detected in DOs regardless of pFF supplementation. When porcine oocytes were cultured in the presence of pFF for 24 and 48 hrs, the activities of tPA-PAI, tPA, and uPA were observed in both COCs and DOs. In medium of absence of pFF, PA activities were observed in oocytes with cumulus cells only. On the other hand, three plasminogen-dependent lytic bands (tPA-PAI, tPA, and uPA) were observed in pFF cultures. Particularly uPA activity was higher than the other kinds of PA activity. When oocytes and cumulus cells were separated from porcine COCs at 0 hr of culture, tPA-PAI, tPA, and uPA were detected in cumulus cells at 48 hr of culture, but no PA activities were in DOs. The presence of pFF and cumulus cells in maturation medium stimulated not only nuclear and cytoplasmic maturation in porcine COCs, but also PA production by cumulus cells and COCs. It is possible that PAs produced by cumulus cells migrated through the gap junction between oocyte and cumulus cells. These results suggest that porcine oocytes have no ability to produce PA themselves.

Effect of Oocyte Maturation Medium, Cytochalasin Treatment and Electric Activation on Embryonic Development after Intracytoplasmic Sperm Injection in Pigs

  • Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05