• Title/Summary/Keyword: piezoelectricity

Search Result 154, Processing Time 0.023 seconds

On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices (압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰)

  • Kim, Jae Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

Influence of loose bonding, initial stress and reinforcement on Love-type wave propagating in a functionally graded piezoelectric composite structure

  • Singh, Abhishek K.;Parween, Zeenat;Chaki, Mriganka S.;Mahto, Shruti
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.341-358
    • /
    • 2018
  • This present study investigates Love-type wave propagation in composite structure consists of a loosely bonded functionally graded piezoelectric material (FGPM) stratum lying over a functionally graded initially-stressed fibre-reinforced material (FGIFM) substrate. The closed-form expressions of the dispersion relation have been obtained analytically for both the cases of electrically open and electrically short conditions. Some special cases of the problem have also been studied and the obtained results are found in well-agreement with the classical Love wave equation. The emphatic influence of wave number, bonding parameter associated with bonding of stratum with substrate of the composite structure, piezoelectric coefficient as well as dielectric constant of the piezoelectric stratum, horizontal initial stresses, and functional gradedness of the composite structure on the phase velocity of Love-type wave has been reported and illustrated through numerical computation along with graphical demonstration in both the cases of electrically open and electrically short condition for the reinforced and reinforced-free composite structure. Comparative study has been carried out to analyze the distinct cases associated with functional gradedness of the composite structure and also various cases which reveals the influence of piezoelectricity, reinforcement and horizontal initial stress acting in the composite structure, and bonding of the stratum and substrate of the composite structure in context of the present problem which serves as one of the major highlights of the study.

Characterization of the Material Properties of 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ Single Crystals Grown by the Solid-State-Crystal-Growth Method (고상단결정법으로 성장시킨 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ 압전단결정의 물성평가)

  • 이상한;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, all the materials constants of the PMN-32%PT single crystals grown by the solid state crystal growth method were measured by the resonance method. PMN-PT crystals of tetragonal symmetry have six elastic constants, three piezoelectric constants and two dielectric constants for their independent material constants. These materials constants were extracted from six sets of crystal samples of each different geometry to have different vibration modes respectively. Measured results showed that the crystal has larger electromechanical coupling factor k/sub 33/ (∼86%) and piezoelectric constant d/sub 33/ (∼1200pC/N) than conventional piezoceramics. Validity of the measurement was confirmed through comparison of the results with the impedance spectrum from finite element analysis of the samples and the results measured with a commercial do meter.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics

  • Kim, Jong-Hyun;Seo, In-Tae;Hur, Joon;Kim, Dae-Hyeon;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.129-133
    • /
    • 2016
  • $MnO_2$ was added to the $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the $MnO_2$-added NKN-CT ceramics sintered at $1020^{\circ}C$, indicating that $MnO_2$ assisted the liquid-phase sintering of these materials. $Mn^{3+}$ ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the $Mn^{3+}$ ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.

Effects of Sintering Atmosphere on Piezoelectric Properties of 0.75BF-0.25BT Ceramic

  • Kim, Dae Su;Kim, Jeong Seog;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.162-166
    • /
    • 2016
  • 0.75BF-0.25BT ceramics were prepared by sintering at $980-1040^{\circ}C$ in air or under atmosphere powder. A sample with 1 mole %-excess $Bi_2O_3$ was also prepared to compensate for $Bi_2O_3$-evaporation. Physical and piezoelectric properties of these three samples were compared. When the sintering temperature increased from $980^{\circ}C$ to $1040^{\circ}C$, the density of the sample sintered in air decreased continuously due to Bi-evaporation. Due to the suppression of Bi-evaporation, the sample sintered under atmosphere powder had a higher density at sintering temperatures above $1000^{\circ}C$ than did the sample sintered in air. The addition of 1 mole %-excess $Bi_2O_3$ successfully compensated for Bi-evaporation and kept the density at the higher value until $1020^{\circ}C$. Grain size increased continuously when the sintering temperature increased from 980 to $1040^{\circ}C$, irrespective of the sintering atmosphere. When the sintering temperature increased, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($k_p$) increased for all samples. The sample with 1 mole % excess-$Bi_2O_3$ showed the highest density and the best piezoelectric properties at sintering temperature of $1020^{\circ}C$.

Measurement of Effective Transverse Piezoelectric Coefficients $(e_{31,f})$ of Fabricated Thick PZT Films on $SiN_x/Si$ Substrates ($SiN_x/Si$ 기판에 제조된 후막 PZT의 횡 압전 계수 $(e_{31,f})$ 측정)

  • Jeon, Chang-Seong;Park, Joon-Shik;Lee, Sang-Yeol;Kang, Sung-Goon;Lee, Nak-Kyu;Ha, Kyoang-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.965-968
    • /
    • 2004
  • Effective transverse Piezoelectric Coefficients $(e_{31,f})$ of thick PZT $(Pb(Zr_{0.52}Ti{0.48}Ti_{0.48})O_3)$ films on $SiN_x/Si$ substrates were measured with PZT thicknesses and top electrode dimensions. $e_{31,f}$ is one of important Parameters characterizing Piezoelectricity of PZT films. Thick PZT films have been used as various sensors and actuators because of their high driving force and high breakdown voltage. Thick PZT films were fabricated on Pt/Ta/$SiN_x$/Si substrates using sol-gel method. Thicknesses of PZT films were $1{\mu}m$ and $1.8{\mu}m$. $|e_{31,f}|$ values of $1.8{\mu}m$-thick-PZT films were higher than those of $1{\mu}$-thick-PZT films. Maximum $|e_{31,f}|$ of $1.8{\mu}$-thick-PZT films was about $50^{\circ}C/m^2$.

  • PDF

Design of a Piezocomposite Generating Element and Its Characteristics (압전-복합재료 발전 소자의 설계 및 특성)

  • Tien, Minh Tri;Kim, Jong-Hwa;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.867-872
    • /
    • 2010
  • Unused energy derived from sources in nature can be captured and stored for future use, for example, to recharge a battery or power a device; this process of capturing and storing energy is called energy harvesting. Extensive investigations are being carried out in order to use piezoelectricity to harvest the energy generated by body movements or machine vibrations. This paper presents a simple analytical model that describes the output voltage effectiveness of a Piezocomposite Generating Element (PCGE) from vibration and its experimental verification. PCGE is composed of carbon/epoxy, PZT, and glass/epoxy layers. During the manufacturing process, the stacked layers were cured at $177^{\circ}C$ in an autoclave, which created residual stresses in PCGE and altered the piezoelectric properties of the PZT layer. In the experiments, three kinds of lay-up configurations of PCGE were considered to verify the proposed prediction model and to investigate its capability to convert oscillatory mechanical energy into electrical energy. The predicted performance results are in good agreement with observed experimental ones.

Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current (TSDC 방법을 이용한 AC 폴링된 PMN-PT 단결정의 디폴링 메커니즘 분석)

  • Lee, Geon-Ju;Kim, Hwang-Pill;Lee, Sang-Goo;Lee, Ho-Yong;Jo, Wook
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.59-62
    • /
    • 2020
  • Currently, increasing attention is being paid to relaxor-based ferroelectric single crystals in photoacoustic images, especially for high-end applications. Among the crystals are (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-100xPT) single crystals located near their morphotropic phase boundary (x = 0.30-0.35) because of their ultrahigh piezoelectric and electromechanical coupling properties. The alternating current poling (ACP) treatment, rather than the conventional direct current poling treatment, has recently been spotlighted due to its effectiveness in enhancing the piezoelectric properties. So far, it has been suggested that the enhanced piezoelectricity originates from either a domain miniaturization to nanodomains or from an electric-field-induced monoclinic symmetry. In this study, we demonstrate by thermally stimulated depolarization current measurements that the effect of ACP is too complex to be explained using a single mechanism and that the proposed electric-field-induced monoclinic symmetry is unlikely to exist.

An Exploration on the Piezoelectric Energy Harvesting Clothes based on the Motion Analysis of the Extremities (인체의 사지 동작 분석에 기반한 압전 에너지 수확 의류의 탐색적 연구)

  • Park, Seon-Hyung;Cho, Hyun-Seung;Yang, Jin-Hee;Yun, Dae-Yeon;Yun, Kwang-Seok;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2013
  • Recently, researches of piezoelectric energy harvesting were tried and in this study, a piezoelectric energy harvesting clothes was developed. First, piezoelectric energy harvesting zone on the extremities were drawn by 3D motion capturing and as a result, the hip, the elbow, and the knee were determined. A new structure of piezoelectric harvester was developed for appling to clothes. Because it needed to be flexible and sensitive for human body, the 2 layer stacked structure was proposed. A prototype of seamless garment was designed for a harvesting clothes because it needed to be body-tight and not to restrict the movement. High peak-to-peak voltages were acquired from the energy harvesting clothes.

  • PDF