Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.2.162

Effects of Sintering Atmosphere on Piezoelectric Properties of 0.75BF-0.25BT Ceramic  

Kim, Dae Su (Department of Materials Science and Engineering, Hoseo University)
Kim, Jeong Seog (Department of Digital Display Engineering, Hoseo University)
Cheon, Chae Il (Department of Materials Science and Engineering, Hoseo University)
Publication Information
Abstract
0.75BF-0.25BT ceramics were prepared by sintering at $980-1040^{\circ}C$ in air or under atmosphere powder. A sample with 1 mole %-excess $Bi_2O_3$ was also prepared to compensate for $Bi_2O_3$-evaporation. Physical and piezoelectric properties of these three samples were compared. When the sintering temperature increased from $980^{\circ}C$ to $1040^{\circ}C$, the density of the sample sintered in air decreased continuously due to Bi-evaporation. Due to the suppression of Bi-evaporation, the sample sintered under atmosphere powder had a higher density at sintering temperatures above $1000^{\circ}C$ than did the sample sintered in air. The addition of 1 mole %-excess $Bi_2O_3$ successfully compensated for Bi-evaporation and kept the density at the higher value until $1020^{\circ}C$. Grain size increased continuously when the sintering temperature increased from 980 to $1040^{\circ}C$, irrespective of the sintering atmosphere. When the sintering temperature increased, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($k_p$) increased for all samples. The sample with 1 mole % excess-$Bi_2O_3$ showed the highest density and the best piezoelectric properties at sintering temperature of $1020^{\circ}C$.
Keywords
$BiFeO_3-BaTiO_3$; Sintering; Excess-$Bi_2O_3$; Piezoelectricity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; Academic Press, New York, 1971.
2 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimurac, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015).   DOI
3 J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng and F.-Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013).   DOI
4 J. Roedel, W. Jo, K. T. P. Seifert, E.-M. Anton, and T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
5 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications -Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012).   DOI
6 P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 [19] 5049-62 (2009).   DOI
7 T. Takenaka, H. Nagata, and Y. Hiruma, "Current Developments and Prospective of Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 47 [5S] 3787-801 (2008).   DOI
8 T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 111-24 (2007).
9 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004).   DOI
10 S. O. Leontsev and R. E. Eitel, "Dielectric and Piezoelectric Properties in Mn-Modified (1-x)$BiFeO_3$-$xBaTiO_3$ Ceramics," J. Am. Ceram. Soc., 92 [12] 2957-61 (2009).   DOI
11 J. Chen and J. Cheng, "Enhanced Thermal Stability of Lead-Free High Temperature $0.75BiFeO_3$-$0.25BaTiO_3$ Ceramics with Excess Bi Content," J. Alloy. Compd., 589 115-19 (2014).   DOI
12 H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, and H. Wang, "Piezoelectric Properties and Temperature Stabilities of Mn- and Cu-Modified $BiFeO_3$-$BaTiO_3$ High Temperature Ceramics," J. Eur. Ceram. Soc., 33 [6] 1177-83 (2013).   DOI
13 Y. J. Lee and J. S. Kim, S. H. Han, H.-W. Kang, and H.-G. Lee, and C. I. Cheon, "Effect of Sintering Temperature on the Piezoelectric Properties in $BiFeO_3$-$BaTiO_3$ Ceramics," J. Kor. Phys. Soc., 61 [6] 947-50 (2012).   DOI
14 Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, and D. Lin, "Microstructure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of Sc-Modified $BiFeO_3$-$BaTiO_3$ Multiferroic Ceramics with $MnO_2$ Addition," J. Am. Ceram. Soc., 97 [6] 1809-18 (2014).   DOI
15 D. J. Kim, M. H. Lee, J. S. Park, M.-H. Kim, T. K. Song, W.-J. Kim, K. W. Jang, S. S. Kim, and D. Do, "Effects of Sintering Temperature on the Electric Properties of Mn-modified $BiFeO_3$-$BaTiO_3$ Bulk Ceramics," J. Kor. Phys. Soc., 66 [7] 1115-19 (2015).   DOI
16 X.-H. Liu, Z. Xu, S.-B. Qu, X.-Y. Wei, and J.-L. Chen, "Ferroelectric and Ferromagnetic Properties of Mn-Doped $0.7BiFeO_3$-$0.3BaTiO_3$ Solid Solution," Ceram. Int., 34 [4] 797-801 (2008).   DOI
17 Y. Wei, X. Wang, J. Zhu, X. Wang, and J. Jia, "Dielectric, Ferroelectric, and Piezoelectric Properties of $BiFeO_3$-$BaTiO_3$ Ceramics," J. Am. Ceram. Soc., 96 [10] 3163-68 (2013).   DOI
18 M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, "Structure Property Relations in $BiFeO_3$/$BaTiO_3$ Solid Solutions," J. Appl. Phys., 87 855-62 (2000).   DOI
19 C. A. Randall, N. Kim, J.-P. Kucera, W. Cao, and T. R. Shrout, "Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics," J. Am. Ceram. Soc., 81 [3] 677-88 (1998).