• Title/Summary/Keyword: piezoelectric transducer

Search Result 391, Processing Time 0.022 seconds

A study on the Fabrication and Characteristics of SAW Temperature Sensor using piezoelectric material (압전재료를 이용한 SAW 온도센서의 제작 및 특성에 대한 연구)

  • 박재홍;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.563-567
    • /
    • 2004
  • In this paper, a remote temperature sensor based on surface acoustic wave is introduced and the issues on design, manufacturing, and test of the sensor are addressed. SAW sensors having single and double electrode are prepared on the 128$^{\circ}$ YX-LiNbO$_3$ Substrate. The frequency responses of SAW sensors on the temperature change are compared. To measure the change of center frequency, two center frequencies on the 3dB and 20dB are measured and compared. Since the center frequency on the temperature change from -30$^{\circ}C$ to 80$^{\circ}C$ is linearly changed, the SAW sensor is applicable to the temperature sensor.

  • PDF

Piezoelectric and Acoustic Properties of PZI-Polymer 1 -3-0 Type Composite (PZT-고분자 1-3-0형 복합압전체의 압전 및 음향특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.317-320
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor k/sub t/ which was comparable with single phase PZT ceramics and mechanical quality factor Qm were about 0.65 and 6, respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF

Novel design of interdigitated electrodes for piezoelectric transducers

  • Jemai, Ahmed;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

A Study on PZT-5A Probe for Nondestructive Inspection (비파괴검사를 위한 PZT-5A 탐촉자에 관한 연구)

  • 황현석
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • In this study, piezoelectric transducers were designed and manufactured using PZT-5A which had relatively high electromechanical coefficient, nondestructive testing system was developed which was able to inspect automatically using stepping motors, PC-Lab, and PC-Scope. The optimum design conditions for NDT were presented and verified comparing PZT-5A probes with comercial probes. It was proved by simulation and experiments that Epoxy is a good material as matching and backing layers. The envelope was reduced 60% with matching layer and 76% with matching and backing layer. NDT was successfully carried out for aluminum test pieces. Distance error of PZT-5A probe was 2.8%.

  • PDF

Finite Element Analysis of Piezoelectric transformer (압전 변압기의 유한 요소 해석)

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.71-73
    • /
    • 2001
  • 본 논문에서는 유한 요소법을 이용하여 압전 트랜스듀서 (piezoelectric transducer)의 임피던스 및 기계적인 변위값을 계산하였고 이를 실험적으로 검증하였다. 이러한 수치해석을 바탕으로 압전 현상을 해석하기 위해 필요한 물질 상수들의 특성에 미치는 영향을 분석하였다. 이러한 분석을 바탕으로 수치해석에 필요한 물질 상수들을 가리고, 가려진 물질 상수들간의 관계를 규명하여 역산해야할 상수들의 개수를 줄임으로써 간단한 실험에 의해서 압전체의 수치해석에 필요한 물질 상수들을 역으로 찾아갈 수 있는 방법을 제시하였다.

  • PDF

Investigation on the Design Method of a Energy Harvesting Power Supply for a Smart Sensor (스마트 센서의 에너지 하베스팅 전원 공급부 설계 방안 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2023
  • A smart sensor is the key element to implement IoT (Internet of Things) service, as a terminal equipment. This paper investigated the design method of a power supply using energy harvesting technique for a smart sensor. the performance of a power supply using a solar cell and a piezoelectric transducer as a energy harvesting device was verified and the method to optimize a power supply was analyzed depending on the operating condition of a smart sensor. Also the method to increase a battery life cycle as a auxiliary power supply was proposed.

High $T_c/E_c$ PMN-PZT Single Crystals for Piezoelectric Actuator and Transducer Applications : Bridgman PMN-PT Crystals vs. SSCG PMN-PZT Crystals (압전 액츄에이터와 트랜스듀서용 고효율 압전 PMN-PZT 단결정 개발 : 브릿지만법 PMN-PT 단결정과 고상단결정 성장법 PMN-PZT 단결정 비교)

  • Lee, Ho-Yong;Lee, Sung-Min;Kim, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.17-17
    • /
    • 2009
  • Piezoelectric single crystals in the ternary MPB PMN-PZ-PT system with high $T_cs$ ($T_c$ > $200\sim300^{\circ}C$) and $E_cs$($E_c$>5~10 kV/cm) were fabricated by the cost-effective solid-state crystal growth (SSCG) technique. Chemically uniform PMN-PZT single crystals were successfully grown up to 60 mm by the SSCG method and their dielectric and piezoelectric properties characterized. Compared to Bridgman PMN-PT single crystals, the high $T_c/E_c$ PMN-PZT single crystals were found to exhibit a much wider usage range with respect to electric field as well as temperature, and thus become best candidates for medical transducers, actuators, and naval applications.

  • PDF

Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string

  • Rudolf, Christian;Martin, Thomas;Wauer, Jorg
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 2010
  • An adaptronic strut for machine tools with parallel kinematics for compensation of the influence of geometric errors is introduced. Implemented within the strut is a piezoelectric sensor-actuator unit separated in function. In the first part of this contribution, the functional principle of the strut is presented. For use of one piezoelectric transducer as both, sensor and actuator as so-called self-sensing actuator, the acquisition of the sensing signal while actuating simultaneously using electrical bridge circuits as well as filter properties are examined. In the second part the control concept developed for the adaptronic strut is presented. A co-simulation model of the strut for simulating the controlled multi-body behavior of the strut is set-up. The control design for the strut as a stand-alone system is tested under various external loads. Finally, the strut is implemented into a model of the complete machine tool and the influence of the controlled strut onto the behavior of the machine tool is examined.

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.