• Title/Summary/Keyword: piezoelectric constant$(d_{33})$

Search Result 184, Processing Time 0.029 seconds

A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film (압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기)

  • Song, Hyun-Cheol;Kim, Sang-Jong;Moon, Hi-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

A Study on the Electrical Properties of $xPb(R_{1/2}Ta_{1/2})O_3-(1-x)Pb(Zr_{0.52}Ti_{0.48})O_3$(R=Al,Y) Ceramics ($xPb(R_{1/2}Ta_{1/2})O_3-(1-x)Pb(Zr_{0.52}Ti_{0.48})O_3$(R=Al, Y) 세라믹스의 전기적 특성에 관한 연구)

  • Kang, Do-Won;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.157-160
    • /
    • 2001
  • We have investigated the Dielectric and Piezoelectric properties of $xPb(R_{1/2}Ta_{1/2})O_3-(1-x)Pb(Zr_{0.52}Ti_{0.48})O_3$ (R=Al,Y) solid solutions in which R ions are substituted for Al and Y ions. The maximum value of electromechanical coupling factor kp of 55% and 51% were obtained at the composition of 5mol% PAT and 5mol% PYT. However mechanical quality factor$(Q_m)$ had a minimum value of 44 and 69 at the composition of 5mol% PAT and 5mol% PYT. Also, the maximum value of piezoelectctric constant of $d_{33}(329[pC/N])$ and $d_{33}(310[pC/N])$ were obtained at the composition of 5mol% PAT and 5mol% PYT.

  • PDF

Preparation of Low-Temperature Fired PZT Thick Films on Si by Screen Printing

  • Cheon, Chae-Il;Lee, Bong-Yeon;Kim, Jeong-Seog;Bang, Kyu-Seok;Kim, Jun-Chul;Lee, Hyeung-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.20-23
    • /
    • 2003
  • Piezoelectric powder with the composition of PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3/)O$_3$ and small particle size of 0.3 $\mu\textrm{m}$ was investigated for low-temperature firing of PZT thick films. PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3)O$_3$ ceramics showed dense microstructure and superior piezoelectric properties, electromechanical coupling factor (k$\_$p/) of 0.501 and piezoelectric constant (d$\_$33/) of 224. The PZT paste was made of the powder and organic vehicles, and screen-printed on Pt(450nm)/YSZ(110nm)/SiO$_2$(300nm)/Si substrates and fired at 800∼900$^{\circ}C$. Any interface reaction between the PZT thick film and the bottom electrode was not observed in the PZT thick films. The PZT thick film fired at 800$^{\circ}C$ showed moderate electrical properties, the remanent polarization(p$\_$r/) of 16.0 ${\mu}$C/$\textrm{cm}^2$, the coercive field(E$\_$c/) of 36.7 ㎸/cm, and dielectric constant ($\varepsilon$$\_$r/) of 531. Low-temperature sinterable piezoelectric composition and high activity of fine particles reduced the sintering temperature of the thick film. This PZT thick film could be utilized for piezoelectric microactuators or microsensors that require Si micromachining technology.

Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 Ceramics Manufactured by Post-annealing Method (Post-annealing 방법으로 제작된 저온소결 Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 세라믹의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.227-231
    • /
    • 2008
  • In this study, in order to improve the electrical properties of low temperature sintering piezoelectric ceramics, $[0.05Pb(Zn_{1/2}W_{1/2})-0.07Pb(Mn_{1/3}Nb_{2/3})-0.088Pb(Zr_{0.48}Ti_{0.52})]O_3$(abbreviated as PZW-PMN-PZT) ceramic systems were fabricated using $Bi_2O_3$, CuO and $Li_2CO_3$ as sintering aids and then their piezoelectric and dielectric properties were investigated according to the amount of $Li_2CO_3$ and post-annealing process. Post-annealing process enhanced all physical properties except for mechanical quality factor (Qm). 0.2 wt% $Li_2CO_3$ added and post-annealed specimen showed the excellent values suitable for low loss piezoelectric actuator application as follow: the density = 7.86 $g/cm^3$ electromechanical coupling factor (kp) = 0.575, piezoelectric constant $d_{33}$ = 370 pC/N, dielectric constant ($\varepsilon_r$) = 1546, and mechanical quality factor (Qm) = 1161, respectively.

Piezoelectric Properties of PMN-PNN-PZT Ceramics and the Simulation of Ultrasonic Cleaner

  • Sujin Kang;Ju Hyun Yoo;Sun A Whang;Jae Gyu Lee;Jong Hyeon Lee;Ji Hoon Lee;Dae Yeol Hwang;Sua Kim;Seong Min Lee;Han Byeol Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.191-196
    • /
    • 2023
  • In this paper, for the application of ultrasonic cleaners for cleaning dentures and transparent braces, Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3 Nb2/3)O3-Pb(Zr,Ti)O3 [PMN-PNN-PZT] system ceramics were manufactured and their dielectric and piezoelectric properties were investigated. Overall the best properties suitable for the device applications such as ultrasonic cleaner were obtained from the ceramics sintered at 920℃: bulk density of 7.8 g/cm3, the dielectric constant (εr) of 1,689, piezoelectric charge constant (d33) of 433 pC/N, planar electromechanical coupling factor (kp) of 0.64, mechanical quality factor (Qm) of 835, S11E of 13.37 (10-12 N/m2), and Curie temperature of 315℃ By using the physical properties of this composition, the ultrasonic cleaner was designed and simulated using the commercial ATILA software. For the three-layered ceramics with the dimension of 25 mm × 25 mm × 2.5mm, an excellent displacement of 8.998 10-3 m) and the sound pressure of 147.68 dB were recorded.

Study on Non-contact Ultrasonic Transducer for Measurement of Fruit Firmness (과실 경도측정을 위한 비접촉 초음파 변환기 연구)

  • Lee, Sang-Dae;Ha, Tae-Hoon;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.189-196
    • /
    • 2010
  • This study was conducted to develop an non-contact ultrasonic transducer for measurement of fruit firmness. The center frequency of non-contact ultrasonic transducer was 500 kHz. As an active element of non-contact ultrasonic transducer, the 1-3 piezoelectric composite material was selected. That material has high piezoelectric properties such as electro-mechanical coupling factor, $k_t$ and piezoelectric voltage constant, $d_{33}$ and also that material has low acoustical impedance which enables to matching the acoustical impedances between piezoelectric material and air. As a front matching material between 1-3 piezoelectric composite material and air, various kinds of paper with different thickness were tested. To control the dead-zone of the fabricated non-contact ultrasonic transducer, the backing material composed of epoxy resin and tungsten powder were made and evaluated. The fabricated non-contact ultrasonic transducer for fruit showed that the cneter frequency, bandwidth and beamwidth were approximately 480 kHz, 30 % and 12 mm, respectively. It was concluded that non-contact measurement of apple firmness would be possible by using the fabricated non-contact ultrasonic transducer.

Dielectric and Piezoelectric Properties of (Na,K)(Nb,Ta,Sb)O3 Ceramics doped with Nb2O5 (Nb2O5 첨가에 따른 (Na,K)(Nb,Ta,Sb)O3 세라믹스의 유전 및 압전 특성)

  • Byeon, Sun-Min;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.867-872
    • /
    • 2012
  • In this study, in order to develop excellent lead free piezoelectric ceramics for piezoelectric actuators application, $Li_{0.04}(Na_{0.50}K_{0.50})_{0.96}[(Nb_{0.86}Ta_{0.10}Sb_{0.04})_{0.994}Co_{0.015}]O_3+0.0025SrO+0.15\;wt%K_2CO_3+x\;wt%Nb_2O_5$ (x = 0 - 0.5 wt%) (abbreviated as LNKNTSCS-xN) ceramics were fabricated by a conventional sintering technique. the phase structure, microstructure and electrical properties were investigated with a emphasis on the influence of the $Nb_2O_5$ content. High electrical properties of $d_{33}$=234 pC/N, kp=0.392, ${\varepsilon}_r$=1,395, ${\rho}=4.70g/cm^3$ were obtained from the specimen with x=0.4 wt%, which suggests that the composition ceramics is a promising lead-free piezoelectric material.

Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of CuO Addition (CuO 첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성)

  • Lee, KabSoo;Kim, YouSeok;Yoo, JuHyun;Mah, Sukbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.630-634
    • /
    • 2014
  • $(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.9975}Sb_{0.065}Ta_{0.0375})O_3+0.3 wt%CoO$ ceramics were fabricated as a function of CuO addition by traditional solid state sintering process in order to develop excellent lead-free piezoelectric ceramics composition. The addition of CuO in the LNKNTS composition ceramics can effectively enhance the densification of the ceramics, resulting in the oxygen vacancies as hardening effect. The excellent piezoelectric properties of electromechanical coupling factor($k{\small}_P$) of 0.378, piezoelectric constant($d_{33}$) of 152 pC/N were obtained from the 1.0 mol% CuO doped LNKNTS ceramics sintered at $1,020^{\circ}C$ for 3 h.

Piezoelectric Properties of lead free (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 Ceramics with ZnO Addition (ZnO 첨가량에 따른 비납계 (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 세라믹스의 압전 특성)

  • Lee, Dong-Hyun;Lee, Seung-Hwan;Nam, Sun-Pill;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2021-2025
    • /
    • 2010
  • Electrical and structural properties were investigated on the effects of ZnO and the lead-free NKN-LST ceramics with the addition of ZnO were fabricated by a conventional mixed oxide method. A gradual change in the crystal and microstructure was observed with the increase of ZnO addition. For the NKN-LST-ZnO ceramics sintered at $1050^{\circ}C$, bulk density increased with the addition of ZnO and showed maximum value at addition 2.0mol% of ZnO. Curie temperature of the NKN-LST-ZnO ceramics slightly decreased with adding ZnO. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the small amount of ZnO addition, which might be due to the increase in density. The high piezoelectric properties = 153 pC/N, electromechanical coupling factor = 0.484 and dielectric constant = 2883 were obtained for the NKN-LST+0.5ZnO ceramics sintered at $1050^{\circ}C$ for 2h.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.