• 제목/요약/키워드: piezoelectric composite actuator

검색결과 115건 처리시간 0.025초

벽면의 임피던스변화에 따른 폐공간 내부에서의 음장특성 분석 (Sound Absorption Effects in a Rectangular Cavity According to the Surface Impedance of Wall)

  • 오재응;김상헌;도중석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.687-694
    • /
    • 1997
  • The anisotropy and shape of distributed piezopolymer actuator have advantages over isotropic piezo ceramic materials, since these features of PVDF can be utilized as another design variable in control application. This study is interested in the reduction of sound transmission through elastic plate into interior space by using the PVDF actuator. The plate-cavity system is adopted as a test problem. The vibration of composite plate and the sound fields through plate are analyzed by using the coupled finite element and boundary element method. Some numerical simulations are performed on sound transmission through elastic plates. To investigate the effects of anisotropy and shape of distributed piezopolymer actuator, various kinds of distributed PVDF actuators are applied in sound control simulation for isotropic and anisotropic plates. The PVDF actuators applied are different from each other in their shapes and laminate angles. The results of control simulation show that the control effectiveness of distributed PYDF actuator can be enhanced by using the coupling between shape of actuator and vibration modes of structure and the anisotropy of piezoelectric properties of PVDF.

  • PDF

가정 변형률 요소를 이용한 복합재 압전작동기의 작동특성해석 (Performance analysis of composite piezoceramic actuator by assumed strain elements)

  • 김영성;이상기;박훈철;윤광준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.461-469
    • /
    • 2002
  • This paper deals with a fully coupled piezoelectric-mechanical assumed strain solid element that can be used for geometric and material nonlinear modeling of thin piezoelectric actuators. Since the assumed strain solid element can alleviate locking, the element is suitable for performance analysis of very thin actuators without locking. A finite element code is developed based on the finite element formulation and validated by solving typical numerical examples such as bimorph and unimorph beams. Using thecode, we have conducted performance analysis for LIPCA actuator. The estimated actuation displacement of LIPCA agrees well with experimental data under low prescribed voltage.

  • PDF

시뮬레이션을 통한 무밸브 마이크로 펌프의 전기-유체-구조 상호작용에 대한 연구 (Electro-Fluid-Structural Interaction Simulation of a Valveless Micropump)

  • 리광철;구남서;한철희
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.7-13
    • /
    • 2008
  • 본 논문에서는 유한요소법을 기반으로 한 소프트웨어 COMSOL Multiphysics를 이용하여 압전 복합재료 작동기를 이용하여 제작한 무밸브 마이크로펌프의 성능을 연구하였다. 압전 마이크로펌프는 4층의 경량 압전 복합재료 작동기, PDMS으로 된 챔버와 2개의 디퓨저로 이루어졌다. 시뮬레이션에서는 압전 재료 영역, 구조 영역과 유체 영역을 완전 연성하여 해를 계산하였다. 물을 유체로 사용하였으며, 유량을 마이크로펌프의 구조적 파라미터에 대하여 계산하였다. 이 연구에 기초하여 보다 성능이 좋은 마이크로펌프를 제시하였다.

곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가 (Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA)

  • 구남서;신석준;박훈철;윤광준
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.

압전필름을 이용한 복합재료 외팔보의 능동진동제어 (Active Vibration Control of a Composite Beam Using Piezoelectric Films)

  • 김승한;최승복;정재천
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

PZT 액추에이터와 PVDF센서를 이용한 외팔보의 손상 진단에 관한 연구 (Study on the Damage Diagnosis of an Cantilever Beams using PZT Actuator and PVDF Sensor)

  • 권대규;임숙정;유기호;이성철
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.73-82
    • /
    • 2004
  • This paper presents the study on damage diagnosis of an intelligent cantilevered beams using PZT actuator and PVDF sensor This study provides the theoretical and experimental verification to examine structural damage. Time domain analysis for the non-destructive detection of damage is presented by parameterized partial differential equations and Galerkin approximation techniques. The time histories of the vibration response of structure were used to identify the presence of damage. Furthermore, this systematic approach permits one to use the piezomaterials to both excite and sense the vibration of structures. We also carried out the experimental verification about reliability of theoretical methods fur detecting the damage of a composite beam with PZT actuator and PVDF sensor. Experimental results are presented from tests on cantilevered composite beams which is damaged at different location and different dimensions. The results were compared with the simulation results. Good agreement between the results was found for the time shifts and amplitude difference in transients response of the cantilevered beam.

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

반복하중을 받는 압전 복합재료 작동기의 피로 특성 (Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field)

  • 헤리세티아완;구남서;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

끝단 질량을 가진 복합재료 얇은 벽보의 퍼지이론과 압전 감지기/작동기를 이용한 진동제어 (Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy logic and Piezoelectric Sensors and Actuator)

  • 이윤규;송오섭;민준식;강호식;정남희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.950-957
    • /
    • 2003
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composit thin-walled beam with a tip mass.

  • PDF

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF