• 제목/요약/키워드: piezoelectric actuators/sensors

검색결과 102건 처리시간 0.029초

압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어 (Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator)

  • 권대규;유기호;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구 (A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor)

  • 박상신;김규하
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

On magnetostrictive materials and their use in adaptive structures

  • Dapino, Marcelo J.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.303-329
    • /
    • 2004
  • Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and high-authority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

수위변화에 따른 파이프 시스템의 진동 특성 변화에 대한 연구 (A research on Dynamic characteristic of Submerged pipe ; Support, Flange, Upper pump)

  • 정휘권;김종윤;박규해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.699-705
    • /
    • 2013
  • This paper presents vibration testing, control, and finite element analysis of a piping system, which is subjected to the changes in fluid levels. Nuclear power plants typically employ a cooling system that uses sea water. These systems are subjected to dynamic characteristic changes caused by sea-level variations, which introduces failures of cooling system components. Therefore in this study, analytical and experimental studies were performed to understand the effect of sea-level changes on the dynamic characteristics of piping systems. It was shown that, as the sea-level increases, pipe's natural frequencies decreases in relation to its mode shape. A 1/14 scale model was also built to compare the results obtained by the analytical study. A good agreement between experiment and analytical studies were observed. Finally, an on-line resonant frequency identification system was proposed and developed, which utilizes piezoelectric transducers as sensors and actuators, in order to avoid catastrophic failure of piping systems.

  • PDF

$SiN_x/Si$ 기판에 제조된 후막 PZT의 횡 압전 계수 $(e_{31,f})$ 측정 (Measurement of Effective Transverse Piezoelectric Coefficients $(e_{31,f})$ of Fabricated Thick PZT Films on $SiN_x/Si$ Substrates)

  • 전창성;박준식;이상렬;강성군;이낙규;나경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.965-968
    • /
    • 2004
  • Effective transverse Piezoelectric Coefficients $(e_{31,f})$ of thick PZT $(Pb(Zr_{0.52}Ti{0.48}Ti_{0.48})O_3)$ films on $SiN_x/Si$ substrates were measured with PZT thicknesses and top electrode dimensions. $e_{31,f}$ is one of important Parameters characterizing Piezoelectricity of PZT films. Thick PZT films have been used as various sensors and actuators because of their high driving force and high breakdown voltage. Thick PZT films were fabricated on Pt/Ta/$SiN_x$/Si substrates using sol-gel method. Thicknesses of PZT films were $1{\mu}m$ and $1.8{\mu}m$. $|e_{31,f}|$ values of $1.8{\mu}m$-thick-PZT films were higher than those of $1{\mu}$-thick-PZT films. Maximum $|e_{31,f}|$ of $1.8{\mu}$-thick-PZT films was about $50^{\circ}C/m^2$.

  • PDF

Bi(NiaX1-a)O3-PbTiO3 계 압전 신조성(X-Ti,Nb)의 내전압 특성 향상 (Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System)

  • 최순목;서원선
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.220-225
    • /
    • 2008
  • Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.

인체 삽입형 인공와우를 위한 무선 통신 시스템 (Wireless Communication Systems for Human Implantable Artificial Cochlea)

  • 한성민;신재섭;조재욱;장종문;최홍수;최지웅
    • 한국통신학회논문지
    • /
    • 제38C권12호
    • /
    • pp.1150-1158
    • /
    • 2013
  • 인공와우는 와우의 물리적 또는 기능적 손상으로 유발된 청각장애를 가지고 있는 환자에게 청각기능을 회복하는 매우 효과적인 수단으로 알려져 있다. 하지만 현재까지 상용화된 인공와우 제품은 크기, 전력소모와 같은 측면에서 휴대성이 불편하여 아직 많은 한계점을 가지고 있다. 이러한 단점을 해결하기 위한 새로운 방식의 인체 삽입형 인공와우 개발이 요구되고 있다. 본 논문에서는 최근 연구 개발 중인 인체 삽입형 인공와우를 구성하는 센서부, 자극부, 무선통신부 등의 설계와 본 시스템에 탑재되는 통신시스템의 특징 및 시뮬레이션을 통한 평가결과 등을 기술하였다.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Fabrication of PVDF Structures by Near Field Electrospinning

  • 김성욱;지승묵;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF