Browse > Article
http://dx.doi.org/10.12989/sem.2004.17.3_4.303

On magnetostrictive materials and their use in adaptive structures  

Dapino, Marcelo J. (Department of Mechanical Engineering, The Ohio State University)
Publication Information
Structural Engineering and Mechanics / v.17, no.3_4, 2004 , pp. 303-329 More about this Journal
Abstract
Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and high-authority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.
Keywords
magnetostrictive materials; actuators; sensors; magnetic activation; transducer design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Body, C., Reyne, G. and Meunier, G. (1997), "Nonlinear finite element modelling of magneto-mechanical phenomenonin giant magnetostrictive thin films", IEEE Trans. Magn., 33(2), 1620-1623, March.   DOI   ScienceOn
2 Butler, J.L., Butler, S.C. and Butler, A.L. (1993), "Hybrid magnetostrictive/piezoelectric tonpilz transducer", J.Acoust. Soc. Am., 94, 636-641.   DOI   ScienceOn
3 Calkins, F.T., Dapino, M.J. and Flatau, A.B. (1997), "Effect of prestress on the dynamic performance of aTerfenol-D transducer", Proc. of SPIE Smart Structures and Materials 1997, 3041, 293-304, San Diego, CA,March.
4 Calkins, F.T. and Flatau, A.B. (1996), "Transducer based measurements of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1996, 2717, 709-719, San Diego, CA, March.
5 Chikazumi, S. (1984), Physics of Magnetism. R.E. Krieger Publishing, Malabar, FL.
6 Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "Structural-magnetic strain model for magnetostrictivetransducers", IEEE Trans. Magn., 36(3), 545-556.   DOI   ScienceOn
7 Flatau, A.B., Dapino, M.J. and Calkins, F.T. (1998), "High-bandwidth tunability in a smart passive vibrationabsorber", In Proc. of SPIE Smart Structures and Materials, 3327, 463-473, San Diego, CA, March 1998.
8 Goldie, J.H., Gerver, M.J., Kiley, J. and Swenbeck, J.R. (1998), "Observations and theory of Terfenol-Dinchworm motors", In Proc. of SPIE Smart Structures and Materials 1998, 3329, 780-785, San Diego, CA,March.
9 Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60.   DOI   ScienceOn
10 Kessler, M.K., Sottos, N.R. and White, S.R. (2003), "Self-healing structural composite materials", CompositesPart A: Applied Science and Manufacturing, 34(8), 743-753, August.   DOI   ScienceOn
11 Lee, E.W. (1955), "Magnetostriction and magnetomechanical effects", Reports on Prog. in Phys., 18, 184-220.   DOI   ScienceOn
12 Lee, E.W. and Bishop, J.E. (1966), "Magnetic behaviour of single-domain particles", Proc. Phys. Soc., 89, 661,London.   DOI   ScienceOn
13 Roth, R.C. (1992), "The elastic wave motor-a versatile Terfenol driven, linear actuator with high force and greatprecision", In Proc. 3rd Int. Conf. New Actuators, 138-141, Bremen, Germany. AXON Tech..
14 Reimers, A. and Della Torre, E. (1999), "Fast Preisach based model for Terfenol-D", IEEE Trans. Magn., 35,1239-1242, May.   DOI   ScienceOn
15 Smith, R.C. and Ounaies, Z. (2000), "A domain wall model for hysteresis in piezoelectric materials", CRSCTechnical Report CRSC-TR99-33 and J. of Intell. Mater. Syst. and Struct., in press.
16 Vranish, J.M., Naik, D.P., Restorff, J.B. and Teter, J.P. (1991), "Magnetostrictive direct drive rotary motordevelopment", IEEE Trans. Magn., 27, 5355-5357.   DOI   ScienceOn
17 Sablik, M.J. and Jiles, D.C. (1988), "A model for hysteresis in magnetostriction", J. Appl. Phys., 64(10), 5402-5404, 1988.   DOI
18 Jiles, D.C. and Atherton, D.L. (1986), "Theory of ferromagnetic hysteresis", J. Magn. Magn. Mater., 61, 48-60.   DOI   ScienceOn
19 Akuta, T. (1992), "Rotational type actuators with Terfenol-D rods", In Proc. 3rd. Int. Conf. New Actuators, 244-248, Bremen, Germany. VDI-VDE.
20 Sablik, M.J. and Jiles, D.C. (1993), "Coupled magnetoelastic theory of magnetic and magnetostrictivehysteresis", IEEE Trans. Magn., 29(3).
21 Kittel, C. (1949), "Physical theory of ferromagnetic domains", Rev. Mod. Phys., 21, 541-583.   DOI
22 Dapino, M.J., Calkins, F.T., Smith, R.C. and Flatau, A.B. (2002), "A coupled magnetomechanical model formagnetostrictive transducers and its application to Villari-effect sensors", J. Intelligent Material Systems andStructures, 13(11), 737-748, November 01.   DOI   ScienceOn
23 Chen, W., Frank, J., Koopmann, G.H. and Lesieutre, G.A. (1999), "Design and performance of a high forcepiezoelectric inchworm motor", In Proc. of SPIE Smart Structures and Materials 1999, Newport Beach, CA,March.
24 Dapino, M.J., Flatau, A.B. and Calkins, F.T. (1997), "Statistical analysis of Terfenol-D material properties", InProc. of SPIE Smart Structures and Materials 1997, 3041, 256-267, San Diego, CA, March.
25 Frederick, J.R. (1965), Ultrasonic Engineering. Wiley, New York.
26 James, R.D. and Kinderlehrer, D. (1993), "Theory of magnetostriction with applications to $Tb_{x}Dy_{1-x}Fe_{2}$",Philosophical Magazine B, 68(2), 237-274.   DOI
27 Clark, A.E., Teter, J.P., Wun-Fogle, M., Moffett, M. and Lindberg, J. (1990), "Magnetomechanical coupling in Bridgman-grown $Tb_{0.3}Dy_{0.7}Fe_{1.9}$ at high drive levels", J. Appl. Phys., 67(9), May.
28 Calkins, F.T., Smith, R.C. and Flatau, A.B. (2000), "An energy-based hysteresis model for magnetostrictivetransducers", IEEE Trans. Magn., 36(2), 429-439, April.   DOI   ScienceOn
29 Uchida, H., Wada, M., Ichikawa, A., Matsumara, Y. and Uchida, H.H. (1996), "Effects of the preparation methodand condition on the magnetic and giant magnetostrictive properties of $(Tb, Dy)Fe_{2}$ thin films", In Proc.Actuator 96, 5th Intern. Conf. on New Actuators, 275-278, Bremen, Germany. VDI-VDE.
30 Garg, D.P., Zikry, M.A., Anderson, G.L. and Stepp, D. (2002), "Health monitoring and reliabiltiy of adaptiveheterogenous structures", Structural Healt Monitoring, 1(1), 23-39.   DOI
31 Kellogg, R.A. and Flatau, A.B. (1999), "Blocked force investigation of a Terfenol-D transducer", In Proc. ofSPIE Smart Structures and Materials 1999, 3668, Newport Beach, CA, March.
32 Restorff, J.B. (1994), "Magnetostrictive materials and devices", In Encyclopedia of Applied Physics, 9, 229-244.VCH Publishers, Inc..
33 Dapino, M.J., Calkins, F.T. and Flatau, A.B. (1999), "Magnetostrictive devices". In 22nd. Encyclopedia ofElectrical and Electronics Engineering, 12, 278-305. Ed. J.G. Webster, John Wiley & Sons, Inc.
34 Dapino, M.J., Calkins, F.T., Hall, D.L. and Flatau, A.B. (1996), "Measured Terfenol-D material properties undervaried operating conditions", Proc. of SPIE Smart Structures and Materials 1996, 2717, 697-708, San Diego,CA, February.
35 Anjanappa, M. and Wu, Y. (1997), "Magnetostrictive particulate actuators: configuration, modeling andcharacterization", Smart Mater. Struct., 6, 393-402.   DOI   ScienceOn
36 Dapino, M.J., Smith, R.C. and Flatau, A.B. (2000), "A model for the DE effect in magnetostrictive transducers",In Proc. SPIE Smart Structures and Materials 2000, 3985, 174-185, Newport Beach, CA, 6-9 March.
37 Venkataraman, R., Dayawansa, W.P. and Krishnaprasad, P.S. (1998), "The hybrid motor prototype: design detailsand demonstration results", Technical report, CDCSS, University of Maryland, College Park, MD, 1998.CDCSS T.R. 98-2.
38 Jiles, D.C. and Thoelke, J.B. (1994), "Theoretical modelling of the effects of anisotropy and stress on themagnetization and magnetostriction of $Tb_{0.3}Dy_{0.7}Fe_{2}$", J. Magn. Magn. Mater., 134, 143-160.   DOI   ScienceOn
39 Dandridge, A., Koo, K.P., Bucjolts, F. and Tveten, A.B. (1986), "Stability of a fiber-optic magnetometer", IEEETrans. Magn., MAG-22, 141.
40 Wun-Fogle, M., Savage, H.T. and Spano, M.L. (1989), "Enhancement of magnetostrictive effects for sensorapplications", J. Mater. Eng., 11(1), 103-107.   DOI
41 Smith, R.C. "Smart structures: model development and control applications", In Series on Applied andComputational Control, Signals and Circuits (ACCSC). Ed. Biswa Datta. Birkhauser. in press.
42 Yariv, A. and Windsor, H. (1980), "Proposal for detection of magnetic field through magnetostrictiveperturbation of optical fibers", Opt. Lett., 5, 87.   DOI
43 Restorff, J.B., Savage, H.T., Clark, A.E. and Wun-Fogle, M. (1990), "Preisach modeling of hysteresis inTerfenol-D", J. Appl. Phys., 67(9), 5016-5018.   DOI
44 Seekercher, J. and Hoffmann, B. (1990), "New magnetoelastic force sensor using amorphous alloys", SensorsActuators, A21-A23, 401-405.
45 Claeyssen, F., Lhermet, N. and Letty, R.L. (1996), "Design and construction of a resonant magnetostrictivemotor", IEEE Trans. Magn., 32(5), 4749-4751.   DOI   ScienceOn
46 Dapino, M.J., Smith, R.C., Faidley, L.E. and Flatau, A.B. (2000), "A coupled structural-magnetic strain andstress model for magnetostrictive transducers", J. Intell. Mater. Syst. and Struct., 11(2), 135-152, February.   DOI
47 Bozorth, R.M. (1968), Ferromagnetism. D. Van Nostrand, Inc..
48 Teter, J.P., Clark, A.E. and McMasters, O.D. (1987), "Anisotropic magnetostriction in $Tb_{0.27}Dy_{0.73}Fe_{1.95}$", J. Appl.Phys., 61, 3787-3789.   DOI
49 E. du Trémolet de Lacheisserie (1993), Magnetostriction Theory and Applications of Magnetoelasticity. CRCPress, Inc., Boca Raton, FL.
50 Robert, G., Damjanovic, D., Setter, N. and Turik, A.V. (2001), "Preisach modeling of piezoelectric nonlinearityin ferroelectric ceramics", J. Appl. Phys., 89(9), 5067-5074.   DOI   ScienceOn
51 Smith, R.C. (1998), "Hysteresis modeling in magnetostrictive materials via Preisach operators", J. Mathematical Systems, Estimation and Control, 8(2), 249-252.
52 Engdahl, G. (Ed.). (2000), Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego, CA.
53 Hall, D.L. (1994), "Dynamics and vibrations of magnetostrictive transducers", PhD dissertation, Iowa StateUniversity, Ames, Iowa.
54 Cedell, T. (1995), "Magnetostrictive materials and selected applications, magnetoelastically induced vibrations inmanufacturing processes", PhD thesis, Lund University, Lund, Sweden, 1995. LUTMDN/(TMMV-1021)/1-222/(1995).
55 Chopra, I. (2002), "Review of state of the art of smart structures and integrated systems", AIAA J., 40(11), 2145-2187, November.   DOI   ScienceOn
56 Agayan, V. (1996), "Thermodynamic model for ideal magnetostriction", Physica Scripta, 54, 514-521.   DOI   ScienceOn
57 Cady, W.C. (1964), Piezoelectricity, an Introduction to the Theory and Applications of Electromechanical Phenomenain Crystals, Dover Publications, Inc. New York.
58 Steel, G.A. (1993), "A 2-khz magnetostrictive transducer", In Transducers for Sonics and Ultrasonics, 250-258,Lancaster, PA. Technomic, Inc..
59 Stoner, E.C. and Wohlfarth, E.P. (1948), "A mechanism of magnetic hysteresis in heterogeneous alloys", Phil.Trans. Roy. Soc., A240, 599-642.
60 Jiles, D.C. (1998), Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London, Secondedition.
61 Jiles, D.C. (1995), "Theory of the magnetomechanical effect", J. Phys. D: Appl. Phys., 28, 1537-1546.   DOI   ScienceOn
62 Jiles, D.C. (1994), Introduction to the Electronic Properties of Materials. Chapman & Hall, London.
63 Chung, R., Weber, R. and Jiles, D.C. (1991), "A Terfenol based magnetostrictive diode laser magnetometer",IEEE Trans. Magn., 27(6), 5358-5360.   DOI   ScienceOn
64 Mayergoyz, I.D. (1991), Mathematical Models of Hysteresis. Springer-Verlag, New York.
65 Clark, A.E., Savage, H.T. and Spano, M.L. (1984), "Effect of stress on the magnetostriction and magnetization ofsingle crystal $Tb_{0.27}Dy_{0.73}Fe_{2}$", IEEE Trans. Magn., MAG-20(5).
66 Berlincourt, D.A., Curran, D.R. and Jaffe, H. (1964), "Piezoelectric piezomagnetic materials and their function intransducers", In Physical Acoustics, Principles and Methods, 1, Part A. Ed. W.P. Mason. Academic Press,New York.
67 Calkins, F.T. (1997), "Design, analysis and modeling of giant magnetostrictive transducers", PhD dissertation,Iowa State University, Ames, Iowa.
68 Mermelstein, M.D. and Dandridge, A. (1987), "Low-frequency magnetic field detection with a magnetostrictiveamorphous metal ribbon", Appl. Phys. Lett., 51(7), 545-547.   DOI
69 Miesner, J.E. and Teter, J.P. (1994), "Piezoelectric/magnetostrictive resonant inchworm motor", In Proc. of SPIESmart Structures and Materials 1994, 2190, 520-527, Orlando, FL.
70 Restorff, J.B., Wun-Fogle, M. and Clark, A.E. (1999), "Temperature and stress dependence of the magnetostrictionin ternary and quaternary Terfenol alloys", In U.S. Navy Workshop on Acoustic Transduction Materialsand Devices, State College, PA, 13-15 April.
71 Sasada, I., Suzuki, N., Sasaoka, T. and Toda, K. (1994), "In-process detection of torque on a drill using themagnetostrictive effect", IEEE Trans. Magn., 30(6), 4632-4635, November.   DOI   ScienceOn
72 Flatau, A.B., Pascual, F., Dapino, M.J. and Calkins, F.T. (1996), "Material characterization of ETREMATerfenol-D", final report, CATD-IPIRT Contract #95-05, October.
73 Kiesewetter, L. (1988), "The application of Terfenol in linear motors", In Proc. 2nd. Inter. Conf. GiantMagnetostrictive Alloys, Marbella, Spain, October 12-14.
74 O'Handley, R.C. (1998), "Model for strain and magnetization in magnetic shape-memory alloys", J. Appl. Phys.,83(6), 3263-3270, March.   DOI   ScienceOn
75 Clephas, B. and Janocha, H. (1997), "New linear motor with hybrid actuator", In Proc. of SPIE Smart Structuresand Materials 1997, 3041, 316-327, San Diego, CA, March.
76 Brown, W.F. (1966), Magnetoelastic Interactions. Springer-Verlag, Berlin.
77 Lindgren, E.A., Poret, J.C., Whalen, J.J., Martin, L.P., Rosen, M., Wun-Fogle, M., Restorff, J.B., Clark, A.E. andLindberg, J.F. (1999), "Development of Terfenol-D transducer material", In U.S. Navy Workshop on AcousticTransduction Materials and Devices, State College, PA, 13-15 April.
78 Smith, R.C. and Zrostlik, R.L. (1999), "Inverse compensation for ferromagnetic hysteresis", In Proc. 1999 IEEEConf. on Decision and Control, Phoenix, AZ, December 7-10.
79 Garshelis, I.J. (1992), "A torque transducer utilizing a circularly polarized ring", IEEE Trans. Magn., 28(5),2202-2204, September.   DOI   ScienceOn
80 Hansen, T.T. (1996), "Magnetostrictive materials and ultrasonics", Technical report, Chemtech, Dec. 1996, 56-59.
81 Hunt, F.V. (1982), Electroacoustics: The Analysis of Transduction and Its Historical Background. AmericanInstitute of Physics for the Acoustical Society of America.
82 Clark, A.E. (1980), In Ferromagnetic Materials, 1, Ch. 7, 531-589. Ed. E.P. Wohlfarth, North HollandPublishing, Co., Amsterdam.
83 Cullity, B.D. (1972), Introduction to Magnetic Materials. Addison-Wesley, Reading, MA.
84 Duenas, T.A., Hsu, L. and Carman, G.P. (1996), "Magnetostrictive composite material systems analytical/experimental", In Adv. Smart Materials Fundamentals and Applications, Boston, MA.