• Title/Summary/Keyword: piezoceramic actuator

Search Result 84, Processing Time 0.026 seconds

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Active Vibration Control of Smart Hull Structure in Underwater Using Micro-Fiber Composite Actuators (MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어)

  • Kwon, Oh-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.466-471
    • /
    • 2008
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezoceramic actuator named as Macro-Fiber Composite (MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear-Quadratic-Gaussian (LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

  • PDF

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Design and evaluation of LIPCA-actuated flapping device (LIPCA 작동기로 구동되는 날갯짓 기구의 설계 및 성능평가)

  • Lee, Seung-Sik;Syaifuddin, Moh;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.48-53
    • /
    • 2005
  • In this paper, we present our recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 4 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동 되는 공압 밸브의 압력제어)

  • Jo, Myeong-Su;Yu, Jung-Gyu;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

Feedforward Active Shock Response Control of a Flexible Beam (유연빔의 피드포워드 능동 충격응답 제어)

  • Pyo, Sang-Ho;Lee, Young-Sup;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.213-216
    • /
    • 2005
  • Active control method is applied to a flexible beam excited by a shock impulse by focusing on reducing the residual vibrations after the shock input. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using an error sensor and adaptive algorithm. Both numerical simulation and experimental result show a promising possibility of applying to a practical problem.

  • PDF

Structural Diagnosis in Time Domain on Damage Size (손상크기에 따른 시간영역에서의 구조물 진단)

  • 권대규;임숙정;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.259-262
    • /
    • 2002
  • This paper provides the experimental verification of a non-destructive time domain approach to examine structural damage. Time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure cause changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the use of beam like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters, and hence to detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different location and with damage of different dimensions. It is demonstrated that the method can sense the presence of damage, and characterize the damage to a satisfactory precision.

  • PDF

Application of Piezoceramic Actuator to the Inch-Worm (이송자벌레로의 압전세라믹 작동기 응용)

  • Kim, In-Su;Lee, Hong-Sik;Song, Jun-Yeop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.157-163
    • /
    • 2001
  • This paper presents the new linear notion device so called \"inch-werm\" which gets large displacement by incrementally summing small displacements of PZT actuators. Dynamic stiffness of inch-worm is generally low compared to its driving condition due to the requirement of inch-worm like small size and light weight. This low stiffness may degenerate the positional precision of inch-worm. An inch-worm is realized using three PZT actuators, a monolithic moving device and a guide way frame. Finite element method and experimental approach are used to analyse the static and dynamic motion of the designed inch-worm. Command reference input is shaped to reduce the residual vibration of inch-worm. The practical feasibility of inch-worm is also examined by running tests.ing tests.

  • PDF

Preparation of Bi0.5Na0.5TiO3-Based Multilayer Ceramic Actuators Using Microwave Sintering (마이크로파 소결법을 이용한 Bi0.5Na0.5TiO3계 적층형 세라믹 액추에이터 제조)

  • Kang, Jin-Kyu;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.702-706
    • /
    • 2014
  • A comparative study has been attempted for microwave and conventional sintering of lead-free $Bi_{0.5}Na_{0.5}TiO_3(BNT)$-based multilayer ceramic actuators(MLAs). It was found that microwave sintering (MWS) could be successfully applied to the co-firing of piezoceramic/AgPd MLAs with a 10 times shorter firing cycle as well as $100^{\circ}C$ lower firing temperature ($850^{\circ}C$) for sufficient densification than conventional furnace sintering ($950^{\circ}C$). Furthermore, MWS-derived specimens showed better electric field-induced strain than that of CFS-derived specimens by effectively suppressing interdiffusions between ceramic and electrode layers.