• 제목/요약/키워드: pier

검색결과 885건 처리시간 0.024초

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.

Numerical analysis of RC hammer head pier cap beams extended and reinforced with CFRP plates

  • Tan, Cheng;Xu, Jia;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.461-470
    • /
    • 2020
  • This paper presents a numerical study on structural behavior of hammer head pier cap beams, extended on verges and reinforced with carbon fiber reinforced polymer (CFRP) plates. A 3-D finite element (FE) model along with a simplified analytical model are presented. Concrete damage plasticity (CDP) was adapted in the FE model and an analytical approach predicting the CFRP anchor strength was adapted in both FE and analytical model. Total five quarter-scaled pier cap beams with various CFRP reinforcing schemes were experimentally tested and analyzed with numerical approaches. Comparison between experimental results, FE results, analytical results and current ACI guideline predictions was presented. The FE results showed good agreement with experimental results in terms of failure mode, ultimate capacity, load-displacement response and strain distribution. In addition, the proposed strut-and-tie based analytical model provides the most accurate prediction of ultimate strength of extended cap beams among the three numerical approaches.

교각에 의한 하상선굴에 관한 실험적 연구 (A Study on the River-Bed Scouring by the Pier)

  • 정준석;임국창
    • 물과 미래
    • /
    • 제6권1호
    • /
    • pp.19-28
    • /
    • 1973
  • Presented is the results of a model study about scouring around a bridge pier. 24 different types of piers were inestigated for the depth and width of scouring. The grain size of sand used in the experiment ranges from 0.149 to 2, 380mm, The time required to reach the stable bed formation was about 30min, with the range of Froud number from 0.58 to 0.69. It has been found that the scouring is most severe at the frontal side of the pier and decreases with decreasing a contact angle (between the center line of the pier and tangent to the frontal face). For design purposes, it is recomanded that the contact angle at the frontal face is 25 degrees for a triangular type and 40 deyrees for a circular type respectively.

  • PDF

Theoretical analysis of self-centering concrete piers with external dissipators

  • Cao, Zhiliang;Guo, Tong;Xu, Zhenkuan;Lu, Shuo
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1313-1336
    • /
    • 2015
  • The self-centering prestressed concrete (SCPC) bridge pier with external dissipators is a novel structure, aiming at reducing residual deformation and facilitating the post-earthquake repair. This paper presents the configuration and mechanical behaviors of the pier. A theoretical model for the lateral force-displacement relationship under cyclic loading is developed. The proposed model comprises an iterative procedure which describes the deformation of dissipators under different conditions. Equations of pier stiffness after gap opening, as well as the equivalent viscous damping ratio, etc., are derived based on the proposed model. Existing cyclic load test results were used to validate the proposed model, and good agreement is observed between the analytical and test results.

잔교식 안벽 해석시 수평지반반력계수의 적용 (Application of the Lateral Subgrade Reaction Modulus in Landing Pier)

  • 박시범;김지용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Structural analysis of circular UHPCC form for hybrid pier under construction loads

  • Wu, X.G.;Zhao, X.Y.;Han, S.M.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.167-181
    • /
    • 2012
  • Ultra high performance cementitious composite material is applied to the design of multifunctional permanent form for bridge pier in this paper. The basic properties and calculating constitutive model of ultra high performance cementitious composite are introduced briefly. According to momental theory of thin-walled shell, the analytical solutions of structural behavior parameters including circumferential stress, longitudinal stress and shear stress are derived for UHPCC thin-walled circular tube. Based on relevant code of construction loads (MHURD of PPC 2008), the calculating parameter expression of construction loads for UHPCC thin-walled circular tube is presented. With geometrical dimensions of typical pier, the structural behavior parameters of UHPCC tube under construction loads are calculated. The effects of geometrical parameters of UHPCC tube on structural behavior are analyzed and the design advices for UHPCC tube are proposed. This paper shall provide a scientific reference for UHPCC permanent form design and UHPCC hybrid structure application.

연속형 및 혼합이산형 최적설계법에 의한 농업용 수로교 교각 및 교대의 최적설계 (Optimum Design of Reinforced Concrete Agricultural Aqueduct Abutment and Pier Using Continuous and Mixed-Discrete Optimization Methods)

  • 김종옥;박찬기;차상선
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.49-56
    • /
    • 2010
  • This study was conducted to find out the best optimum design method for the design of reinforced concrete agricultural aqueduct abutment and pier structures. The mixed-discrete optimization and continuous optimization method were applied to the design of reinforced concrete agricultural aqueduct abutment and pier and the results of these optimization methods were compared each other. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of the reinforced concrete agricultural aqueduct abutment and pier.

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제10권1호
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

조립식 경골잔교(Fish-bone Girder Pier)의 비틀림 거동분석을 통한 설계 시 고려사항 (Design Consideration of Fish-bone Girder Pier using the Analysis of Torsional Behavior)

  • 윤경민;윤기용;이진옥;임남형
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.561-568
    • /
    • 2014
  • 조립식 경골잔교는 Spine-girder인 단일거더 시스템이므로 휨 뿐만 아니라 비틀림에 큰 영향을 받는 구조물이다. 본 연구에서는 경골잔교의 합리적인 설계를 위하여 설계 시 고려사항을 도출하고자 하였다. 거동분석을 위한 구조해석 유한요소모델을 개발하고, 실험 결과와 비교하여 타당성을 검증하였다. 경골잔교의 거동분석을 통하여 국부적인 과대응력 발생을 방지하기 위하여 Bone-beam 하단부에 보강재 설치가 필요하며, 플랜지의 법선응력은 ?비틂, 플랜지와 웹의 전단응력은 순수비틂에 의한 영향이 지배적으로 작용하는 것을 확인하였다.