• 제목/요약/키워드: phz2

검색결과 13건 처리시간 0.017초

Characterization of a Phenazine and Hexanoyl Homoserine Lactone Producing Pseudomonas aurantiaca Strain PB-St2, Isolated from Sugarcane Stem

  • Mehnaz, Samina;Baig, Deeba Noreen;Jamil, Farrukh;Weselowski, Brian;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1688-1694
    • /
    • 2009
  • A novel strain of fluorescent pseudomonad (PB-St2) was isolated from surface-sterilized stems of sugarcane grown in Pakistan. The bacterium was identified as Pseudomonas aurantiaca on the basis of 16S rRNA gene sequence analysis and results from physiological and biochemical characteristics carried out with API50 CH and QTS 24 bacterial identification kits. Assays using substrate-specific media for enzymes revealed lipase and protease activities but cellulase, chitinase, or pectinase were not detected. The bacterium was unable to solubilize phosphate or produce indole acetic acid. However, it did produce HCN, siderophores, and homoserine lactones. In dual culture assays on agar, the bacterium showed antifungal activity against an important pathogen of sugarcane in Pakistan, namely Colletotrichum falcatum, as well as for pathogenic isolates of Fusarium oxysporium and F. lateritium but not against F. solani. The antifungal metabolites were identified using thin-layer chromatography, UV spectra, and MALDI-TOFF spectra and shown to be phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone (HHL) (assessed using only TLC data). The capacity of this bacterium to produce HCN and 2-OH-PHZ, as well as to inhibit the growth of C. falcatum, has not been previously reported.

Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84

  • Yu, Jun Myoung;Wang, Dongping;Pierson, Leland S. III;Pierson, Elizabeth A.
    • The Plant Pathology Journal
    • /
    • 제34권1호
    • /
    • pp.44-58
    • /
    • 2018
  • Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.

Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass

  • Shahid, Izzah;Rizwan, Muhammad;Baig, Deeba Noreen;Saleem, Rahman Shahzaib;Malik, Kauser A.;Mehnaz, Samina
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.480-491
    • /
    • 2017
  • Fluorescent pseudomonads have been isolated from halophytes, mesophytes, and xerophytes of Pakistan. Among these, eight isolates, GS-1, GS-3, GS-4, GS-6, GS-7, FS-2 (cactus), ARS-38 (cotton), and RP-4 (para grass), showed antifungal activity and were selected for detailed study. Based on biochemical tests and 16S rRNA gene sequences, these were identified as strains of P. chlororaphis subsp. chlororaphis and aurantiaca. Secondary metabolites of these strains were analyzed by LC-MS. Phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, Cyclic Lipopeptide (white line-inducing principle (WLIP)), and lahorenoic acid A were detected in variable amounts in these strains. P. aurantiaca PB-St2 was used as a reference as it is known for the production of these compounds. The phzO and PCA genes were amplified to assure that production of these compounds is not an artifact. Indole acetic acid production was confirmed and quantified by HPLC. HCN and siderophore production by all strains was observed by plate assays. These strains did not solubilize phosphate, but five strains were positive for zinc solubilization. Wheat seedlings were inoculated with these strains to observe their effect on plant growth. P. aurantiaca strains PB-St2 and GS-6 and P. chlororaphis RP-4 significantly increased both root and shoot dry weights, as compared with uninoculated plants. However, P. aurantiaca strains FS-2 and ARS-38 significantly increased root and shoot dry weights, respectively. All strains except PB-St2 and ARS-38 significantly increased the root length. This is the first report of the isolation of P. aurantiaca from cotton and cactus, P. chlororaphis from para grass, WLIP and lahorenoic acid A production by P. chlororaphis, and zinc solubilization by P. chlororaphis and P. aurantiaca.