• Title/Summary/Keyword: phytoplankton size

Search Result 121, Processing Time 0.019 seconds

Ecological Effect of Thermal Effluent in the Korean Coastal Waters I. Significance of Autotrophic Nano and Picoplankton in the Adjacent Waters of Kori Nuclear Power Plant (한국 연안해역에 있어서 온배수 배출의 생태학적 영향 1. 고리 원자력 발전소 주 변해역에서 미소 및 초미소 자가영양 플랑크톤의 중요성)

  • 심재형;여환구
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.77-82
    • /
    • 1991
  • Phytoplankton chlorophyll-a concentrations and primary productivities were measured and analyzed in the adjacent waters of Kori Nuclear Power Plant where thermal effluent is being discharged chlorophyll-a concentrations were ranged from 1.89 to 12.8 ug/l. Nanoplankton 9cell size; 3∼20 um) fractions of the total chlorophyll-a concentrations were ranged from 4.60 to 65.95% and picoplankton (cell size<3um) fractions contributed from 15.71 to 83.20%. Primary productivities measured by C 14 method were ranged from 165.17 to 645.79 mgC/m$^2$ /day and, nanoplankton and picoplankton contribution rate to the total primary productivity were ranged from 8.06 to 43.98% and from 19.64 to 81.45% respectively. these results imply that very tiny cell sized phytoplankton population are important in point of biomass and primary productivity of phytoplankton communities.

  • PDF

Regional Comparisons of Heterotrophic Protists Grazing Impacts and Community in Northwest Pacific Ocean (북서태평양에서 종속영양 원생생물 군집 및 섭식압의 해역별 비교)

  • Yang, Eun-Jin;Ju, Se-Jong;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.289-301
    • /
    • 2008
  • Community structure of heterotrophic protists and their grazing impact on phytoplankton were studied in Northwest Pacific Ocean during October, 2007. The study area was divided into four regions based on physical properties (temperature and salinity) and chlorophyll-a distribution. They were Region I of North Equatorial Currents, Region II of Kuroshio waters, Region III of shelf mixed water, and Region IV of Tsushima warm current from East China Sea. The distribution of chlorophyll-a concentrations and community structure of heterotrophic protists were significantly affected by physical properties of the water column. The lowest concentration of chlorophyll-a was identified in Region I and II, where pico-sized chlorophyll-a was most dominant (>80% of total chlorophyll-a). Biomass of heterotrophic protists was also low in Region I and II. However, Region III was characterized by low salinity and temperature and high chlorophyll-a concentration, with relatively lower pico-sized chlorophyll-a dominance. The Highest biomass of heterotrophic protists appeared in Region III, along with the relatively less important nanoprotists. In Region I, II and IV, heterotrophic dinoflagellates were dominant among the protists, while ciliates were dominant in Region III. Community structure varied with physical(salinity and temperature) and biological (chlorophyll-a) properties. Biomass of heterotrophic protists correlated well with chlorophyll-a concentration in the study area ($r^2=0.66$, p<0.0001). The potential effect of grazing activity on phytoplankton is relatively high in Region I and II. Our result suggest that biomass and size structure of heterotrophic protists might be significantly influenced by phytoplankton size and concentration.

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

Design and Fabrication of a Ballast Water Treatment System Using UV Lamps (자외선램프를 이용한 선박평형수 처리시스템의 설계 및 제작)

  • Pyo, Tae-Sung;Cheon, Sang-Gyu;Park, Dae-Won;Choi, Sung-Kuk;Kim, Seong-Yeon;Kil, Gyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.952-958
    • /
    • 2009
  • The International Maritime Organization (IMO) has adopted the ballast water management convention at a diplomatic conference in early 2004 that all ships should be equipped with a treatment system from 2010 gradually. In this paper, the disinfection characteristic of ultra-violet (UV) rays was studied and a ballast water treatment system (BWTS) which can treat $50m^3$/h sea water was manufactured. The system consists of a disinfection chamber with six 3.5 kW UV lamps which are operated by magnetic ballasts, a programmable logic controller (PLC) and set of pipe lines. The biological disinfection efficacy of the prototype BWTS was evaluated following the IMO rules using zooplankton such as Artemia and Rotifer species for the size over $50{\mu}m$, and phytoplankton such as Tetraselmis and Thalassiosira species for the size between 10 to $50{\mu}m$. From the experimental results, the disinfection efficacy was 99.99 % that meets the IMO requirement. However, more studies on an energy saving system are needed because the consumption power of the prototype system is as high as over 21 kWh for $50m^3$/h.

Adaptations of Estuarine and Freshwater Phytoplankton to Urea Decomposition (기수 및 담수 식물플랑크톤의 요소 분해에 대한 적응)

  • PARK, MYUNG GIL;SHIM, JAE HYUNG;CHO, BYUNG CHEOL
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.323-331
    • /
    • 1993
  • The concentration-dependence of and the effect of light on urea decomposition, and the suppression of urea decomposition by ammonium were studied to understand adaptations in phytoplankton to utilization of urea in the estuarine system of the Mankyung and Dongjin rivers and a hypertrophied pond. Results of size-fractionation showed that bacterial fraction played a minor role (14%) in urea decomposition in the estuary. However, the role of bacteria in urea decomposition seemed to increase in a hypertrophic pond. Natural phytoplankton communities exhibited a monophonic or biphasic kinetics of urea decomposition over a wide range of concentration (upto 7.7 mM). the addition of high concentration of ammonium and incubation of the euphotic samples in the dark caused reductions in the urea decomposition rates. It is suggested that understanding of adaptations in phytoplankton to urea decomposition would help to study the temporal and spatial variabilities of urea decomposition rates in the field and the significance of urea in nitrogen cycle.

  • PDF

Diversity of phytoplankton species in Cheonjin Lake, northeastern South Korea

  • Kim, Han Soon
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.240-258
    • /
    • 2018
  • Background: Several investigations carried out from large brackish lagoons in South Korea. However, no studies have yet examined phytoplankton in lagoons that changed to freshwater, such as Cheonjin Lake. The present study examined the algae from Cheonjin Lake. Methods: Samples were collected at monthly inetrvals from May 2017 to April 2018, from the surface layer using a plankton net (mesh size $20{\mu}m$), and sequeezing submerged macrophytes. Microscopic examinations were conducted at a magnification of 200 to 1000x using a Zeiss microscope (Axio Imager. A2), and photographs were taken with an AxioCam HRC camera. Silica-scaled samples of Chrysophyta for SEM were placed on coverglass, air dried, coated with gold, and then examined with a Hitachi SV8220 SEM. Results: A total of 376 taxa from six major algal groups (Chlorophyta, Chrysophyta, Euglenophyta, Cyanophyta, Dinophyta, and Cryptophyta) were identified. Among these algae, 28 taxa of desmids, 9 taxa of Euglenophyceae, 4 taxa of Chlorophyceae, 2 taxa of Chrysophyceae, and 1 taxon of Xanthophyceae are reported for the first time in Korea. A new species, Cosmarium hexagonum sp. nov was described. The phytoplankton communities were characterized by an abundance of Desmids (within Charophyceae) accounted for 148 taxa from 22 genera. Species richness were particularly high in the Autumn. Conclusion: In this study, a total 376 taxa of 148 desmids (Charophyceae), Chlorophyceae (103 taxa), Chrysophyceae (53 taxa), Euglenophyta (49 taxa), Dinophyta (8 taxa), and Cryptophyta (2 taxa) were identified from Cheonjin Lake. Twenty-eight taxa of desmids including a new species (Cosmarium hexagonum sp. nov.), 9 taxa of Euglenophyceae, 4 taxa of Chlorophyceae, 2 taxa of Chrysophyceae, and 1 taxon of Xanthophyceae were newly recorded in Korea.

Holographic Microscopy Measurement of Inertia Migration Phenomena of Phytoplankton in Pipe Flows (식물성 플랑크톤의 관유동 내 횡방향 이동현상에 대한 홀로그래픽 실험 연구)

  • Lim, Seung Min;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.11-15
    • /
    • 2012
  • Inertial migration phenomena of phytoplankton in pipe flows were investigated using a digital holography technique. As the Reynolds number increases, the microorganisms suspended in a pipe flow are focused at a certain radial position which is called equilibrium position or pinch point. In this study, the effects of the size of microorganism and Reynolds number in the range of 1 < Re < 78 on the inertial migration were investigated and the results are compared with those for solid particles under similar experimental conditions. As a result, the equilibrium position for the elastic microorganisms is not so distinct, compared to the solid particles. This results from deformation of elastic body shape caused by shear-gradient of surrounding flow.

Control of Phytoplankton Bloom using Apple Snail(Pomacea canaliculata: Ampullariidae) (왕우렁이를 이용한 식물플랑크톤 대발생 제어)

  • Lee, Min Hyuk;Kim, Min Ji;Kim, Yong Jae
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • This study is measured the change of chlorophyll-${\alpha}$ concentration and phytoplankton density, the grazing rates (GR) and pseudofaeces production (PFP), by grazing of freshwater apple snail, Pomacea canaliculata, to investigated that the snails are able to control of phytoplankton bloom. The experiments are performed to evaluate the GR and PFP at different conditions such as incubation time (0, 2, 4, 6, 8, 10 and 12 hr), shell height (1.0 to 4.0 cm, n=108), snail density (1, 1.5, 2.5, 3.5 and 5 indiv. $L^{-1}$) and food concentration (200, 400, 600, 800 and $1000{\mu}g$ $L^{-1}$). Regarding feeding time, the highest GR (2.5 L. $gAFDW^{-1}h^{-1}$) and PFP (15.3 mg $AFDW^{-1}$) showed at 4 hr after snail stocking, respectively. The snail, smaller than 1.5 cm in body size, showed the highest of GRs (2.54 L. $gAFDW^{-1}h^{-1}$) for the initial period (2 hr of stocking), compared to those greater than 1.5 cm, which showed a stable FR, higher than 0.099 L. $gAFDW^{-1}h^{-1}$. Upon snail density effect, the density of 5 indiv. $L^{-1}$ induced the most effective inhibition on phytoplankton biomass with the highest PFP. On the food concentration, the highest GR (0.54 L. $gAFDW^{-1}h^{-1}$) and PFP (8.5 mg $gAFDW^{-1}$) were induced at the level of $600{\mu}g$ $L^{-1}$, respectively. We checked that it is possible to control of phytoplankton bloom by the grazing of apple snail as well as Reeve. However, it required a through research for the remove of pseudofaeces and 2nd problem by the decomposition of the organic materals.

The Correlation between Environmental Factors and Phytoplankton Communities in Spring and Summer Stratified Water-column at Jinhae Bay, Korea (진해만에서 춘계와 하계 성층기간 동안 환경요인과 식물플랑크톤 군집구조의 관계)

  • Son, Moonho;Hyun, Bong-Gil;Kim, Dong Sun;Choi, Hyun Woo;Kim, Young Ok;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.219-230
    • /
    • 2012
  • We surveyed 23 sites of Jinhae Bay in spring and summer 2010 in order to study the correlation between the variation of environmental factors, including salinity, temperature, and nutrients and the characteristics of phytoplankton community structures in summer stratification. Phytoplankton biomass was high in the surface water in summer; however, it was very low in the bottom water. The results showed a negative correlation between chlorophyll a (chl. a) and nutrients (silicate, nitrate, nitrite, ammonium, and phosphate) or nutrients ratio in summer; however, there was mostly a positive correlation between chl. a and these nutrients in spring. This inconsistent correlation between spring and summer was attributed to the phytoplankton community, because a diverse phytoplankton community has different nutrient uptake abilities. In addition, the results of CCA (canonical correspondence analysis) showed a negative correlation between phosphate and dominant species, including Chaetoceros spp., Skeletonema costatum-like spp., and Pseudo-nitzschia delicatissima in summer, but a strong positive correlation between DIN (dissolved inorganic nitrogen) and the dominant species, including Cryptomonas spp. and Pseudo-nitzschia multistriata in spring. Consistently, the dominant algal species in summer showed a relatively smaller size cells compared with those in spring, suggested that it may have related with the low nutrient levels at surface layer due to strong stratified water column of summer.

Effects of Environmental Factors on Phytoplankton Communities in the Marine Ranching Ground of Tongyeong Coastal Waters, Korea (통영 바다목장 해역에서 식물플랑크톤군집에 미치는 환경요인의 영향)

  • Lee, Jin-Hwan;Jung, Seung-Won;Kim, Jong-Man
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.15-24
    • /
    • 2005
  • In order to investigate the structures and dynamics of phytoplankton communities, each physicochemical environmental factor, species composition, standing crop, and dominant species were examined in the marine ranching ground of Tongyeong coastal waters from April to October, 2000. During the studies, mean water temperature and salinity were $18.8^{\circ}C$ and 33.1 psu, respectively. DO, SS and transparency varied from 5.43 to 11.39 mg/l, 14.6 to 32.4mg/l and 3.5 to 9.0m, respectively. Light intensities varied from 0.02 to $966{\mu}E/m^2/s$, which decreased with depth. $NH_4-N,\;NO_3-N,\;NO_2-N,\;PO_4-P,\;and\;SiO_2-Si$ were fluctuated from 0.059 to 0.332 mg/l, 0.040 to 0.800 mg/l, 0.001 to 0.468 mg/l, 2.3 to $143.0{\mu}g/l$, and 0.007 to 0.600 mg/l, respectively. chlorophyll a concentrations were fluctuated from 0.7 to $8.9{\mu}g/l$. Among 130 taxa of phytoplankton communities observed. diatoms occupied more than 81.54% of the total species, and the others were dinoflagellates and silicoflagellates. Phytoplankton standing crops ranged from $4.6{\times}10^4\;to\;2.6{\times}10^6cells/l$. In October, the standing crops were at bloom level showing more than $10^6cells/lat$ all stations. Dominant species changed by month and station. Leptocylindrus danicus occupied 59.84% in April and 22.03% in June. Pseudo-nitzschia pungens in August and Chaetoceros socialis and Skeletonema costatum in October were predominant species. In order to investigate factors influencing the total phytoplankton standing crops the correlations between the standing crops of diatoms, dinoflagellates, all phytoplanktons occurred and environmental factors were calculated using a multiple regression analysis. The coefficient of determination $(R^2)$ for total standing crops was 0.63 which explained 63% of variance and that of $R^2$ for diatom was 0.82. In statistical analysis, the results showed that the environmental factors influencing the size of the communities were predominantly water temperature, salinity and silicate.