Browse > Article
http://dx.doi.org/10.5407/JKSV.2012.10.3.011

Holographic Microscopy Measurement of Inertia Migration Phenomena of Phytoplankton in Pipe Flows  

Lim, Seung Min (포항공과대학교 기계공학과 대학원)
Lee, Sang-Joon (포항공과대학교 기계공학과)
Publication Information
Journal of the Korean Society of Visualization / v.10, no.3, 2012 , pp. 11-15 More about this Journal
Abstract
Inertial migration phenomena of phytoplankton in pipe flows were investigated using a digital holography technique. As the Reynolds number increases, the microorganisms suspended in a pipe flow are focused at a certain radial position which is called equilibrium position or pinch point. In this study, the effects of the size of microorganism and Reynolds number in the range of 1 < Re < 78 on the inertial migration were investigated and the results are compared with those for solid particles under similar experimental conditions. As a result, the equilibrium position for the elastic microorganisms is not so distinct, compared to the solid particles. This results from deformation of elastic body shape caused by shear-gradient of surrounding flow.
Keywords
Digital holography; Elastic particle; Segre-Silberberg annulus; inertnal migration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Segre G., Silberberg A., 1962, "Behaviour of macroscopic rigid spheres in Poiseuille flow. 2. Experimental results and interpretation", J. Fluid Mech., Vol. 14, pp. 136-157.   DOI
2 KMCC hompage: http://www.kmmcc.re.kr
3 Oliver D. R., 1962, "Influence of particle rotation on radial migration in the Poiseuille flow of suspensions", Nature, Vol. 194, pp. 1269-1271.
4 Tuson H. H., Auer G. K., Renner L. D., Hasebe M., Tropini C., Salick M., Crone W. C., Gopinathan A., Huang K. C, Weibel D, B., 2012, "Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity", Mol Microbiol. Vol. 84, pp. 874-91.   DOI   ScienceOn
5 Engineering Tool Box homepage: http://www.engineeringtoolbox.com/young-modulus-d_417.html.
6 Ho B. P., Leal L. G., 1974, "Inertial migration of rigid spheres in two-dimensional unidirectional flows", J Fluid Mech., Vol. 65, pp. 365-400.   DOI   ScienceOn
7 Schonberg J. A., Hinch E. J., 1989, "Inertial migration of a sphere in Poiseuille flow", J Fluid Mech., Vol. 203, pp. 517-524   DOI   ScienceOn
8 Matas J, Moris J. F., Guazzelli E., 2004, "Inertial migration of rigid spherical particles in Poiseuille flow", J Fluid Mech, Vol. 515, pp. 171-195.   DOI   ScienceOn
9 Serge G., Silberberg A., 1961, "Radial particle displacements in Poiseuille flow of suspensions", Nature, Vol. 89, pp. 209-210.
10 Bhagat A. A. S., Kuntaegowdanahalli S. S., Papautsky I., 2009, "Inertial microfluidics for continuous particle filtration and extraction", Microfluid. Nanofluid., Vol. 7, pp. 217-226.   DOI   ScienceOn
11 Kim Y. W., Yoo J. Y., 2009, "Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications", Biosens Bioelectrons, Vol. 24, pp. 3677-3682.   DOI   ScienceOn
12 Hur S. C., Choi S. E., Kwon S. H., Carlo D. D., 2011, "Inertia focusing of no-spherical microparticles", APL, Vol. 99, pp.044101-1.
13 Choi Y. S., Lee S. J., 2010, "Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow", Microfluidics and Nanofluidics, Vol. 9, pp. 819-829.   DOI   ScienceOn