• Title/Summary/Keyword: phytophthora blight of red pepper

Search Result 62, Processing Time 0.024 seconds

Control Effects of 3-(4-Hydroxyphenyl)-propionic Acid Isolated Xenorhabdus nematophila K1 against Phytophthora Blight and Anthracnose of Red Pepper (Xenorhabdus nematophila K1 대사물질 3-(4-hydroxyphenyl)-propionic acid의 고추 역병과 탄저병에 대한 방제 효과)

  • Cheon, Wonsu;Kim, Doyeon;Kim, Yonggyun;Hong, Yong Pyo;Yi, Youngkeun
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.208-215
    • /
    • 2013
  • 3-(4-Hydroxyphenyl)-propionic acid (HPP) is a bacterial metabolite synthesized and released by an entomopathogenic bacterium Xenorhabdus nematophila K1. In this study, the control efficacy of HPP was tested against Phytophthora blight and anthracnose of red pepper plants. HPP suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight condition, HPP maintained the antifungal activity on the diseases for at least twenty five days. The antifungal activity was not decreased even in the condition of soil-water. It was proved that HPP was able to penetrate the roots and travel upward of the red pepper plants. When HPP suspension was applied to soil rhizosphere before transplanting the red pepper seedlings or was regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight and anthracnose) without any phytotoxicity. These results suggested that HPP can be developed to a systemic agrochemical against Phytophthora blight and anthracnose of red pepper plants.

Effect of Rye Cultivation for Reduction of Phytophthora Blight in Red Pepper Field (노지고추에서 고추역병 경감을 위한 녹비작물 호밀의 재배효과)

  • Kwon, Oh-Hun;Kim, Chan-Yong;Kim, Young-Suk;Won, Jong-Gun;Jung, Hee-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.579-589
    • /
    • 2020
  • This study was carried out to evaluate the effect of rye as green manure crop on the improvement of soil environment and reduction of Phytophthora blight in red pepper of open field where Phytophthora blight occurred frequently. Soil physical properties such as bulk density and porosity were increased in rye cultivation. In addition, gaseous was increased but liquid was decreased compared with conventional cultivation. The analysis of phospholipid fatty acids extracted from soil showed that rye cultivation significantly increased relative abundance of microbial community and ratio of aerobic to anaerobic bacteria. Furthermore, ratio of saturated to unsaturated fatty acids and cyclo-fatty acids to precursor. the indicators of increasing in environmental stresses, were reduced in rye cultivated field. Occurrence of Phytophthora blight in rye cultivation was reduced 30.7% compared with conventional cultivation. These results suggest that rye cultivation in red pepper of open field where Phytophthora blight occurred can improve soil environment and reduce damage of Phytophthora blight.

Effect of Polyvinyl Tunnel after Mulching on the Occurrence of Phytophthora Blight and Anthracnose of Red Pepper (비닐터널 유인재배가 고추 역병과 탄저병의 발생에 미치는 효과)

  • Cheong, Seong-Soo;Kim, Ju-Hee;Choi, Dong-Chil
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.106-108
    • /
    • 2010
  • This survey was conducted to investigate effect of covering with polyvinyl ($120{\times}90cm$) on incidence of Phytophthora blight and anthracnose and growth. Early growth of pepper plant was superior when was covered with polyvinyl after planting. Incidence of anthracnose and Phytophthora blight was lower 26.9% and 60.3% in covering system than those in conventional culture system, respectively. A yield of dried red pepper was more 48.5% in cultured with covering system than that in conventional culture system.

Identification of the Oligotrophic Bacteria Strain 7F Biocontrolling Phytophthora Blight Disease of Red-pepper (고추 역병 방제를 위한 저영양 길항세균 7F 균주의 동정)

  • Kim, Dong-Gwan;Yeo, Yun-Soo;Kwon, Soon-Wo;Jang, Kil-Su;Lee, Chang-Muk;Lee, Mi-Hye;Kim, Soo-Jin;Koo, Bon-Sung;Yoon, Sang-Hong
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • A total of 10,753 oligotrophic bacteria were isolated from the cultivated soils of red-pepper infected by Phytophthora blight disease in various regions of Korea (Chungju, Anmyon, Taean, Andong, Eumsung and Goesan). Seven bacteria isolates among these collected resources were selected by the first screening of in vitro antagonistic assay against major several plant pathogenic fungi including Phytophthora capsici. Finally, strain 7F was selected by pot assay for a possible biological control agent against Phytophthora blight disease of pepper seedling in the greenhouse. Strain 7F was identified as Bacillus subtilis on the basis of its 16S rDNA sequence analysis and as standardized biochemical characteristics assay kits such as API20 NE. In the experiment of P. capsici zoospore infected red-pepper on the pot test, infection rate of red-pepper with nonetreatment to Phytophthora blight disease was 87%, while the rate was only 6% in the pot treated with strain 7F. This result indicated that the Bacillus subtilis strain 7F will be useful as a potential biocontrol agent for Phytophthora blight disease of red-pepper.

Induction of systemic resistance against Phytophthora blight by Enterobacter asburiae ObRS-5 with enhancing defense-related genes expression (역병에 대한 Enterobacter asburiae ObRS-5 처리의 유도저항성 발현)

  • Kim, Dayeon;Jeon, Yong Hee;Ahn, Jea-Hyung;Ahn, Si Hyeon;Yoon, Young Gun;Park, In Cheol;Park, Jin Woo
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.724-732
    • /
    • 2020
  • Phytophthora capsici is the organism that causes Phytophthora blight which infects red pepper plants prolifically, ultimately leading to crop loss. A previous study revealed that Enterobacter asburiae ObRS-5 suppresses Phytophthora blight in both red pepper and Ligularia fischeri plants. In order to determine whether the induced systemic resistance (ISR) was triggered by pre-infection with the ObRS-5 strain, we conducted quantitative PCR using primers for PR1, PR4, and PR10, which correlate with systemic resistance in red-pepper plants. In our results, red pepper plants treated with the ObRS-5 strain demonstrated increased expression of all three systemic resistance genes when compared to controls in the glasshouse seedling assay. In addition, treatment of red peppers with the ObRS-5 strain led to reduced Phytophthora blight symptoms caused by P. capsici, whereas all control seedlings were severely affected. Perhaps most importantly, E. asburiae ObRS-5 was shown to induce the ISR response in red peppers without inhibiting growth. These results support that the defense mechanisms are triggered by ObRS-5 strain prior to infection by P. capsici and ObRS-5 strain-mediated ISR action are linked events for protection to Phytophthora blight.

Control Effects of Indole Isolated from Xenorhabdus nematophila K1 on the Diseases of Red Pepper (Xenorhabdus nematophila K1 유래물질 인돌의 고추 병해 방제 효과)

  • Jeon, Mi-Hyeon;Cheon, Won-Su;Kim, Yong-Gyun;Hong, Yong-Pyo;Yi, Young-Keun
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Indole compound is a bacterial metabolite synthesized and released by an entomopathogenic bacterium, Xenorhabdus nematophila K1. The antibiotic activity was evaluated against plant pathogens, such as Phytophthora blight and anthracnose of red pepper. Indole significantly suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight conditions, indole maintained the antifungal activity for at least sixty days. The activity was not affected under the condition of soil-water. When the indole suspension was applied to surface soil before transplanting of red pepper seedlings and was then regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight, anthracnose, soft rot, and black mold) by about 30%. These results suggest that indole can be used to control Phytophthora blight and anthracnose of red pepper.

Isolation of Antagonistic Bacteria to Phytophthora capsici for Biological Control of Phytophthora blight of Red Pepper (고추역병의 생물학적 방제를 위한 길항세균의 분리)

  • 이용세;최장원;김상달;백형석
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • To isolate of antagonistic bacteria to Phytophthora capsici, which cause Phytophthora blight in red pepper, 237 isolates of Pseudomonas spp. and 260 isolates of Bacillus spp. were screened in selective media from rhizosphere soils of red pepper at Kyongsan, Kyongju, Yongchon and Euisung in Kyongbuk. Among total 497 isolates, 8 isolates of Pseudomonas spp and 4 isolates of Bacillus spp. inhibited the mycelial growth of Phytophthora capsici above 50$\%$ . These antagonistic bacteria showed more inhibitory effect on TSA (tryptic soy agar) than V-8 juice agar. Four isolates, P0704, P1201, B1101 and B1901, showing the most prominent antagonistic activity were selected and identified as P. cepacia (P0704, P1201), B. polymyxa (B1101) and B. subtilis (B1901), respectively. Cell free filtrates of these isolates were shown to inhibit zoosporangia germination and mycelial growth of p. capsici indicating that these isolates turned out to be bacteria producing antifungal substances. As a result of antagonistic test to Phytophthora blight in green house p. cepacia (P0704) showed the highest antagonistic effect with 46.7$\%$ and the rest of them were in the range of 13.4$\%$ to 26.7$\%$ .

  • PDF

Isolation and Identification of the Causal Agents of Red Pepper Wilting Symptoms (고추 시듦 증상을 일으키는 원인균의 분리 및 동정)

  • Lee, Kyeong Hee;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • In order to investigate the cause of wilting symptoms in red pepper field of Korea, the frequency of occurrence of red peppers showing wilting symptoms was investigated in pepper cultivation fields in Goesan, Chungcheongbuk-do for 5 years from 2010 to 2014. There was a difference in the frequency of wilting symptoms depending on the year of investigation, but the frequency of occurrence increased as the investigation period passed from June and July to August. During this period, Ralstonia solanacearum causing the bacterial wilt was isolated at a rate four times higher than Phytophthora capsica causing the Phytophthora late blight. In wilted peppers collected in Goesan of Chungbuk and Andong of Gyeongbuk in 2013 and 2014, R. solanacearum and P. capsici were isolated from 20.3% and 3.8% of the total fields, respectively. In the year with a high rate of wilting symptoms, the average temperature was high, and the disease occurrence date of the bacterial wilt, estimated with disease forecasting model, was also fast. The inconsistency between the number of days at risk of Phytophthora late blight and the frequency of occurrence of wither symptoms is thought to be due to the generalization of the use of cultivars resistant to the Phytophthora late blight in the pepper field. In our study, the wilting symptoms were caused by the bacterial wilt caused by R. solanacearum rather than the Phytophthora late blight caused by P. capsica, which is possibly caused by increasing cultivation of pepper varieties resistant to the Phytophthora late blight in the field.

A Forecasting Model of Phytophthora Blight Incidence in Red Pepper and It′s Computer System (고추역병의 예찰모형과 컴퓨터 시스템)

  • 황의홍;이순구
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Regression models were obtained on the base of the correlation between Phytophthora blight incidence in red pepper and the microclimate data obtained from automated weather station (AWS) during 1997 and 1998. A computer program (PEPBLIGHT) was constructed based on the model that the R2 value is highest among regression models. This computer program uses the microclimate data from more than one AWS through the common dialogue box easy and it is able provide disease forecasting information. In addition, it could be applied far other diseases and converts the microclimate data of AWS to the input data for Statical Analysis System (SAS). PEPBLIGHT was first developed for the forecasting computer system of red pepper blight in Korea. PEPBLIGHT is operated on the MS Windows, so that it is easy to use.

  • PDF

Antifungal Activity of Anemarrhena asphodeloides, Coptis japonica and Phellodendron amurense Extracts against Phytophthora Blight (지모, 일황련 및 황백나무 추출액의 항균활성)

  • EunSooDoh
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.351-359
    • /
    • 1997
  • Antifungal activities of the crude extracts of Anemarrhena asphodeloides. Coptis japonica and Phellodendron amurense were tested against Phvtophthora capsici. and the control effect on red-pepper phytophthora hlight and phytotoxicities of red-pepper were investigated. The results were summarized as follows; Mycelial growth and zoosporangial germination of the red-peppcr phytophthora hlight organism P. capsici were inhihited hy thc crude extracts of plant materials. Methanol extracts or plant materials had hctter antifungal activity than water extracts at hoth a room temperature and a hoiling condition. Antifungal activities of three crude extracts were gradually decreased with prolonged storage period. Red-pepper phytophthora hlight was effectively controlled hy the crude extracts of three plant materials. Of these. the crude extract of C. japonica was marvelously effective. Phytotoxic symptom to red-pepper seedling showed hy water cultural method hut not by pot test. Seed germination and radicle growth of red-pepper were inhihited hy the crude extracts of three plant materials. Phytotoxic symptoms in the leaves and fruits of red-pepper were not ohserved with exogenous foliage application of the three crude extracts.

  • PDF