DOI QR코드

DOI QR Code

Induction of systemic resistance against Phytophthora blight by Enterobacter asburiae ObRS-5 with enhancing defense-related genes expression

역병에 대한 Enterobacter asburiae ObRS-5 처리의 유도저항성 발현

  • Kim, Dayeon (Bioremediation Team, National Institute of Agricultural Sciences) ;
  • Jeon, Yong Hee (Agricultural Microbiology Division, National Institute of Agricultural Sciences) ;
  • Ahn, Jea-Hyung (Bioremediation Team, National Institute of Agricultural Sciences) ;
  • Ahn, Si Hyeon (Bioremediation Team, National Institute of Agricultural Sciences) ;
  • Yoon, Young Gun (Bioremediation Team, National Institute of Agricultural Sciences) ;
  • Park, In Cheol (Bioremediation Team, National Institute of Agricultural Sciences) ;
  • Park, Jin Woo (Agricultural Microbiology Division, National Institute of Agricultural Sciences)
  • 김다연 (국립농업과학원 환경개선미생물연구단) ;
  • 전용희 (국립농업과학원 농업생물부 농업미생물과) ;
  • 안재형 (국립농업과학원 환경개선미생물연구단) ;
  • 안시현 (국립농업과학원 환경개선미생물연구단) ;
  • 윤영건 (국립농업과학원 환경개선미생물연구단) ;
  • 박인철 (국립농업과학원 환경개선미생물연구단) ;
  • 박진우 (국립농업과학원 농업생물부 농업미생물과)
  • Received : 2020.12.05
  • Accepted : 2020.12.24
  • Published : 2020.12.31

Abstract

Phytophthora capsici is the organism that causes Phytophthora blight which infects red pepper plants prolifically, ultimately leading to crop loss. A previous study revealed that Enterobacter asburiae ObRS-5 suppresses Phytophthora blight in both red pepper and Ligularia fischeri plants. In order to determine whether the induced systemic resistance (ISR) was triggered by pre-infection with the ObRS-5 strain, we conducted quantitative PCR using primers for PR1, PR4, and PR10, which correlate with systemic resistance in red-pepper plants. In our results, red pepper plants treated with the ObRS-5 strain demonstrated increased expression of all three systemic resistance genes when compared to controls in the glasshouse seedling assay. In addition, treatment of red peppers with the ObRS-5 strain led to reduced Phytophthora blight symptoms caused by P. capsici, whereas all control seedlings were severely affected. Perhaps most importantly, E. asburiae ObRS-5 was shown to induce the ISR response in red peppers without inhibiting growth. These results support that the defense mechanisms are triggered by ObRS-5 strain prior to infection by P. capsici and ObRS-5 strain-mediated ISR action are linked events for protection to Phytophthora blight.

본 연구에서는 기 선발한 Enterobacter asburiae ObRS-5 균주를 1×108 cfu mL-1 농도로 고추에 관주 처리했을 때 Phytophthora capsici에 의한 고추역병을 74.6% 방제하는 효과가 있었다. E. asburiae ObRS-5 균주에 의한 고추역병 방제 메커니즘을 확인하기 위해 고추의 PR1, PR4 및 PR10 유전자를 특이적으로 증폭하는 프라이머를 이용하여 quantitative PCR을 수행하였다. 그 결과 E. asburiae ObRS-5 균주를 처리한 고추에서 대조구와 비교하여 상기 세 가지 유전자의 발현이 모두 높은 수준을 유지하였다. 또한 E. asburiae ObRS-5 균주는 고추의 생육을 억제하지 않으면서 ISR 반응을 유도하는 것으로 나타났다. 이러한 결과를 통하여 P. capsici이 침입할 때 E. asburiae ObRS-5 균주가 매개하는 ISR 메커니즘을 통해 Phytophthora 역병의 제어가 가능한 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호: PJ01259502) 지원에 의해 수행되었습니다.

References

  1. Bae SJ, TK Mohanta, JY Chung, M Ryu, G Park, S Shim, SB Hong, H Seo, DW Bae, I Bae, JJ Kim and H Bae. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92:128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005
  2. Baum C, W El-Tohamy and N Gruda. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci. Hortic. 187:131-141. https://doi.org/10.1016/j.scienta.2015.03.002
  3. Berner I, SK Rapp, G Jung and G Winkelmann. 1988. Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol. Met. 1:51-56. https://doi.org/10.1007/BF01128017
  4. Bunemann EK, G Bongiomo, Z Bai, RE Creamer, GD Deyn, R de Goede, L Fleskens, B Geissen, TW Kuyper, P Mader, M Pulleman, W Sukkel, JW van Groenigen and L Brussaard. 2018. Soil quality - a critical review. Soil Biol. Biochem. 120:105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
  5. Chernin L, Z Ismailov, S Haran and I Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61:1720-1726. https://doi.org/10.1128/aem.61.5.1720-1726.1995
  6. Cooley MB, WG Miller and RE Mandrell. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69:4915-4926. https://doi.org/10.1128/AEM.69.8.4915-4926.2003
  7. Elliott M, SF Shamoun, G Sumampong, D James, S Masri and A Varga. 2009. Evaluation of several commercial biocontrol products on European and North American populations of Phytophthora ramorum. Biocontrol Sci. Technol. 19:1007-1021. https://doi.org/10.1080/09583150903243870
  8. Haggag W and S Timmusk. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104:961-969. https://doi.org/10.1111/j.1365-2672.2007.03611.x
  9. Hardham AR. 2005. Pathogen profile Phytophthora cinnamomi. Mol. Plant Pathol. 19:260-285. https://doi.org/10.1111/mpp.12568
  10. Heil M and RM Bostock. 2002. Induced systemic resistance(ISR) against pathogens in the context of induced plant defences. Ann. Bot. 89:503-512. https://doi.org/10.1093/aob/mcf076
  11. Hong CE, SY Kwon and JM Park. 2016. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol. Res. 185:13-21. https://doi.org/10.1016/j.micres.2016.01.004
  12. Jee HJ, WD Cho and CH Kim. 2000. Phytophthora diseases in Korea. Rural Development Administration, National Institute of Agricultural Science and Technology, Plant Pathology Division. Suwon, Korea. pp. 87-114.
  13. Jetiyanon K and P Plianbangchang. 2013. Lipopolysaccharide of Enterobacter asburiae strain RS83: A bacterial determinant for induction of early defensive enzymes in Lactuca sativa against soft rot disease. Biol. Control 67:301-307. https://doi.org/10.1016/j.biocontrol.2013.09.014
  14. Joo GJ. 2005. Production of an anti-fungal substance for biological control of Phytophthora capsici causing Phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnol. Let. 27:201-205. https://doi.org/10.1007/s10529-004-7879-0
  15. Kang DS, KJ Min, AM Kwak, SY Lee and HW Kang. 2017. Defense response and suppression of Phytophthora blight disease of pepper by water extract from spent mushroom substrate of Lentinula edodes. Plant Pathol. J. 33:264-275. https://doi.org/10.5423/PPJ.OA.02.2017.0030
  16. Kang HJ, KH Jeong, K Ahn, CU Han, SH Kim and Y Kim. 2011. Damage analysis and establishment of control threshold for Phytophthora blight of hot pepper(Capsicum annuum). Res. Plant Dis. 17:1-12. https://doi.org/10.5423/RPD.2011.17.1.001
  17. Kim BS. 2014. Phytophthora blight of pepper and genetic control of the disease. Cur. Res. Agric. Life Sci. 32:111-117. https://doi.org/10.14518/crals.2014.32.3.022
  18. Kim DY, SY Lee, SH Ahn, JH Han and JW Park. 2020. Biological control of gom-chwi (Ligularia fischeri) Phytophthora root rot with Enterobacter asburiae ObRS-5 to suppress zoosporangia formation and zoospores germination. Plant Pathol. J. 36:244-254. https://doi.org/10.5423/PPJ.OA.11.2019.0283
  19. Kim HY and BH Min. 2003. Effects of arbuscular mycorrhizal fungus, Glomus manihot, on plant growth and nutrient uptake of pepper seedlings. Korean J. Environ. Biol. 21:292-296.
  20. Kim JS, WI Kim, HJ Jee, JG Gwang, CK Kim and CK Shim. 2010. Evaluation of resistance in hot pepper germplasm to Phytophthora blight on biological assay. Hortic. Sci. Technol. 28:802-809.
  21. Kim ST and SC Yun. 2011. Biocontrol activity of Myxococcus sp. KYC 1126 against Phytophthora blight on hot pepper. Res. Plant Dis. 17:121-128. https://doi.org/10.5423/RPD.2011.17.2.121
  22. Kloepper JW, CM Ryu and S Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  23. Lee SH, YE Cho, SH Park, K Balaraju, JW Park, SW Lee and K Park. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49-58. https://doi.org/10.1007/s12600-012-0263-z
  24. Lee SJ, YJ Park, HT Kim and BS Kim. 2010. The race differentiation of Phytophthora capsici in Korea. Res. Plant Dis. 16:153-157. https://doi.org/10.5423/RPD.2010.16.2.153
  25. Lim JH, HY Jung and SD Kim. 2009. Development of the microbial consortium for the environmental friendly agriculture by the antagonistic rhizobacteria. J. Appl. Biol. Chem. 52:116-120. https://doi.org/10.3839/jabc.2009.020
  26. Livak KJ and TD Schmittgen. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  27. Lopez-Gutierrez JC, S Henry, S Hallet, F Martin-Laurent, G Catroux and L Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods 57:399-407. https://doi.org/10.1016/j.mimet.2004.02.009
  28. Macas-Rodrguez L, A Guzmn-Gmez, P Garca-Jurez and HA Contreras-Cornejo. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol. Ecol. 94:fiy137.
  29. Mahaffee WF and PA Backman. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120-1125. https://doi.org/10.1094/Phyto-83-1120
  30. Maleki M, L Mokhtarnejad and S Mostafaee. 2011. Screening of rhizobacteria for biological control of cucumber root and crown rot caused by Phytophthora drechsleri. Plant Pathol. J. 27:78-84. https://doi.org/10.5423/PPJ.2011.27.1.078
  31. Mansoori B and Z Banihashemi. 1982. Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Dis. 66:373. https://doi.org/10.1094/PD-66-373
  32. Park JW, S Jahaggirdar, YE Cho, KS Park, SH Lee and KS Park. 2010. Evaluation of Bacillus subtilis native strains for plant growth promotion and induced systemic resistance in tomato and red-pepper. Korean J. Pestic. Sci. 14:407-414.
  33. Park K, S Dutta, YS Park, MK Sang and SS Moon. 2016. Induction of systemic resistance and tolerance against biotic and abiotic stress in Chinese cabbage by cyclic peptides producing Bacillus vallismortis strain BS07M. pp. 200-205. In: Recent Trends in PGPR Research for Sustainable Crop Productivity. Scientific Publishers. New Delhi, India.
  34. Park SJ, GH Kim, AH Kim, H Lee, HW Gwon, J Kim, KH Lee and HT Kim. 2012. Controlling effect of agricultural organic materials on Phytophthora blight and anthracnose in red pepper. Res. Plant Dis. 18:1-9. https://doi.org/10.5423/RPD.2012.18.1.001
  35. Parra G and JB Ristaino. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:1069-1075. https://doi.org/10.1094/PDIS.2001.85.10.1069
  36. Porter SS, R Bantay, CA Friel, A Garoutte, K Gdanetz, K Ibarreta, BM Moore, P Shetty, E Siler and ML Friesen. 2019. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34:2075-2086.
  37. Shirzad A, VF Mamaghani and M Pazhouhandandeh. 2012. Antagonistic potential of fluorescent Pseudomonads and control of crown and root rot of cucumber caused by Phythophtora drechsleri. Plant Pathol. J. 28:1-9. https://doi.org/10.5423/PPJ.OA.05.2011.0100
  38. Soh JW, KS Han, SC Lee and JH Park. 2012. Inheritance of Resistance to Phytophthora capsici by Inoculums in Korean hot pepper. Res. Plant Dis.18:317-323. https://doi.org/10.5423/RPD.2012.18.4.317
  39. Szczech M and M Shoda. 2006. The effect of mode of application of Bacillus subtilis RB14C on its efficacy as a biocontrol agent against Rhizoctonia solani. J. Phytopathol. 154:370-377. https://doi.org/10.1111/j.1439-0434.2006.01107.x
  40. Utkhede RS. 1986. Biology and control of apple crown rot caused by Phytophthora cactorum: A review. Phytoprotection 67:1-13.
  41. van Loon LC and A van Kammen. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. 'Samsum' and 'Samsun NN' II. Changes in protein constitution after infection with tobacco mosaic virus. Virol. 40:199-211. https://doi.org/10.1016/0042-6822(70)90395-8
  42. van Loon LC and EA van Strien.1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97. https://doi.org/10.1006/pmpp.1999.0213
  43. Woo SM, HK Jung and SD Kim. 2006. Cloning and characterization of a cellulose gene from a plant growth promoting rhizobacterium, Bacillus subtilis AH18 against Phytophthora blight disease in red-peppr. Korean J. Microbiol. Biotechnol. 34:311-317.
  44. Yang R, X Fan, X Cai and F Hua. 2015. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper Phytophthora blight. Biol. Control 85:59-67. https://doi.org/10.1016/j.biocontrol.2014.09.013
  45. Zhang YL, DW Li, ZH Gong, JE Wang, YX Yin and JJ Ji. 2013. Genetic determinants of the defense response of resistant and susceptible pepper (Capsicum annuum) cultivars infected with Phytophthora capsici (Oomycetes; Pythiaceae). Genet. Mol. Res. 12:3605-3621. https://doi.org/10.4238/2013.September.13.5