• Title/Summary/Keyword: phytochromes

Search Result 25, Processing Time 0.028 seconds

Plant Light Signaling Mediated by Phytochromes and Plant Biotechnology

  • Song, Pill-Soon
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.83-96
    • /
    • 1998
  • The plant pigment proteins phytochromes are a molecular light sensor or switch for photomorphogenesis involving a variety of growth and developmental responses of plants to red and far-red wavelength light. Underscoring the photomorphogenesis mediated by phytochromes is the light signal transduction at molecular and cellular levels. For example, a number of genes activated by the phytochrome-mediated signal transduction cascade have been identified and characterized, especially in Arabidopsis thaliana. The light sensor/switch function of phytochromes are based on photochromism of the covalently linked tetrapyrrole chromophore between the two photoreversible forms, Pr and Pfr. The photochromism of phytochromes involves photoisomerization of the tetrapyrrole chromophore. The "photosensor" Pr-form ("switch off" conformation) of phytochromes strongly absorbs 660 nm red light, whereas the "switch on" Pfr-conformation preferentially absorbs 730 nm far-red light. The latter is generally considered to be responsible for eliciting transduction cascades of the red light signal for various responses of plants to red light including positive or negative expression of light-responsive genes in plant nuclei and chloroplasts. In this paper, we discuss the structure-function of phytochromes in plant growth and development, with a few examples of biotechnological implications.

  • PDF

Inter-Domain Signal Transmission within the Phytochromes

  • Song, Pill-Soon
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.215-225
    • /
    • 1999
  • Phytochromes (with gene family members phyA, B, C, D, and E) are a wavelength-dependent light sensor or switch for gene regulation that underscore a number of photo responsive developmental and morphogenic processes in plants. Recently, phytochrome-like pigment proteins have also been discovered in prokaryotes, possibly functioning as an auto-phosphorylating/phosphate-relaying two-component signaling system (Yeh et al., 1997). Phytochromes are photochromically convertible between the light sensing Pr and regulatory active Pfr forms. Red light converts Pr to Pfr, the latter having a "switch-on" conformation. The Pfr form triggers signal transduction pathways to the downstream responses including the expression of photosynthetic and other growth-regulating genes. The components involved in and the molecular mechanisms of the light signal transduction pathways are largely unknown, although G-proteins, protein kinases, and secondary messengers such as $Ca^{2+}$ ions and cGMP are implicated. The 124-127 kDa phytochromes form homodimeric structures. The N-terminal half contains the tetrapyrrolic phytochromobilin for red/far-red light absorption. The C-terminal half includes both a dimerization motif and regulatory box where the red light signal perceived by the chromophore-domain is recognized and transduced to initiate the signal transduction cascade. A working model for the inter-domain signal communication within the phytochrome molecule is proposed in this Review.

  • PDF

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.

A Molecular Model for Light Signal Perception and Interdomain Crosstalk in Phytochrome Photoreceptors

  • Song, Pill-Soon;Park, Chung-Mo
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.79-86
    • /
    • 2000
  • Phytochromes are red and far-red light absorbing photoreceptors for photomorphogenesis in plants. The red/far wavelength reversible biliproteins are made up of two structural domains. The light-perceiving function of the photoreceptor resides in the N-terminal domain, whereas the signal transducing regulatory function is located within the C-terminal domain. The characteristic role of the phytochromes as phtosensory molecular switches is derived from the phototransformation between two distinct spectral forms, the red light absorbing Pr and the far-red light absorbing Pfr forms. The photoinduced Pr Pfr phototransformation accompanies subtle conformational changes throughout the phytochrome molecule. The conformational signals are subsequently transmitted to the C-terminal domain through various inter-domain crosstalks and induce the interaction of the activated C-terminal domain with phytochrome interacting factors. Thus the inter-domain crosstalks play critical roles in the photoactivation of the phytochromes. Posttranslational modifications, such as the phosphorylation of Ser-598, are also involved in this process through conformational changes and by modulating inter-domain signaling.

  • PDF

Photochromism of Phytochromes and Cph1 Requires Critical Amino Acids and Secondary Structure in the N-Terminal Domain

  • Seo Hak-Soo;Bhoo Seong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1441-1447
    • /
    • 2006
  • The light perception and phototransformation of phytochromes are the first process of the phytochrome-mediated light signal transduction. The chromophore ligation and its photochromism of various site-specific and deletion mutants of pea phytochrome A and bacterial phytochrome-like protein (Cph1) were analyzed in vitro. Serial truncation mutants from the N-terminus and C-terminus indicated that the minimal N-terminal domain for the chromophore ligation spans from the residue 78 to 399 of pea phytochrome A. Site-specific mutants indicated that several residues are critical for the chromophore ligation and/or photochromism. Histidine-324 appears to serve as an anchimeric residue for photochromism through its H-bonding function. Isoleucine-80 and arginine-383 playa critical role for the chromophore ligation and photochromism. Arginine-383 is presumably involved in the stabilization of the Pfr form of pea phytochrome A. Apparently, the amphiphilic ${\alpha}$-helix centered around the residue-391 is in the chromophore pocket and critical for the chromophore ligation.