• Title/Summary/Keyword: phytochemical content

Search Result 98, Processing Time 0.035 seconds

Improvement of Liver Function and Suppressed Lipid Peroxidation of Extract from Ginseng Folium and Stem in Acute $CCl_4$ Intoxicated Rats ($CCl_4$로 급성 간손상을 유도한 백서에서 인삼엽과 경추출물의 간기능 개선과 항산화 작용)

  • Lee Min Kyung;Park Sung Hye;Seo Eui Suok;Kim Ki Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1485-1489
    • /
    • 2004
  • Panax ginseng is the one of best famous phytochemical plant in the world and it's various positive effects such as antioxidant, regulation of immunity are very well known. In this study, we investigated primary the cell viability and morphological change and secondary an antioxidative effect and liver function improvement of extract from Ginseng folium and stem in CCl4 intoxicated rats. The NCTC cell line were used for cell viability and sirius red staining before the animal experiment. The female Sprague-Dawley rats (90-100g) were divided into 3 groups (Normal, AC: CCl₄ treated group, GFS: CCl₄+ extract of Ginseng folium and stem treated group) and acute liver damage was developed by one time administration of CCl₄ mixture (0.5㎖/rat). The liver tissue and sera were collected and used for quantitative measurement of enzyme activity (AST, ALT, ALP, BUN), MDA and Hyp. As a result, cell viability in GFS treated group (in concentration of 3.33-33.33㎎ GFS/200㎕ medium) was 180.9-241.0% significantly and dose dependently higher than in control group. And potential state of cell growth and differentiation and no criteria of cytoplasm lysis and nucleus breaking were observed in control and GFS group. The parameters of liver function (AST and ALP) in sera of GFS group showed significantly 93% and 67.6% lower than AC group (p<0.005-0.05). And the level of ALT and BUN showed fast similar in AC group and GFS group. The concentration of MDA in liver was decreased 576.5% significantly in GFS group when compared with AC group (p<0.005). The content of Hyp in GFS group is merely lower than in AC group. In conclusion, the water extract of Ginseng folium and stem such as Ginseng radix may be possessed the antioxidative effect and improvement of liver function in CCl₄ intoxicated rats.

Antioxidative and Biological Activities of Santalum album Extracts by Extracting Methods (추출방법에 따른 백단향의 항산화 및 생리활성)

  • Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.456-460
    • /
    • 2008
  • Santalum album has been used as a folk medicine for treatment of skin diseases, inflammation, gonorrhea, gleet, and cystitis in India and other Asian countries. In a search for possible bioactive agents from natural sources, we found that the various solvent extracts of S. album showed significant antioxidative effect in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity test and moderate other biological functions submitted to the several bioassay systems for whitening and cytotoxicity evaluations. Among the tested extracts displayed DPPH radical scavenging activity, and the 70% acetone extract showed the most potent activity with an $IC_{50}$ value of $18.6\;{\mu}g/ml$, more potent than a positive control, L-ascorbic acid ($IC_{50}$, $28.7\;{\mu}g/mL$). Also, anti-lipid peroxidation, tyrosinase inhibitory, and cytotoxic effects were determined in each experiment. Total phenolic content of 70% acetone extract was found to be 117.1 mg equivalent of gallic acid per g of extract. Previous phytochemical investigation reveals the presence of phenolic compounds. The results indicate that S. album possess potential antioxidant activity and phenolic constituents are responsible for this capacity.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.

Evaluation of the Anti-oxidant Activity of Pueraria Extract Fermented by Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, Ye-Eun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The phytochemical compounds of Pueraria, a medicinally important leguminous plant, include various isoflavones that have weak estrogenic activity and a potential role in preventing chronic disease, cancer, osteoporosis, and postmenopausal syndrome. However, the major isoflavones are derivatives of puerarin and occur mainly as unabsorbable and biologically inactive glycosides. The bioavailability of the glucosides can be increased by hydrolysis of the sugar moiety using ${\beta}$-glucosidase. In this study, we investigated the antioxidant effects of a Pueraria extract after fermentation by Lactobacillus rhamnosus BHN-LAB 76. The L. rhamnosus BHN-LAB 76 strain was inoculated into Pueraria powder and fermented at $37^{\circ}C$ for 72 hr. The total polyphenol content of the Pueraria extract increased by about 134% and the total flavonoid content increased around 110% after fermentation with L. rhamnosus BHN-LAB 76 when compared to a non-fermented Pueraria extract. Superoxide dismutase-like activities, DPPH radical scavenging, and ABTS radical scavenging increased by approximately 213%, 190%, and 107%, respectively, in the fermented Pueraria extract compared to the non-fermented Pueraria extract. Fermentation of Pueraria extracts with L. rhamnosus BHN-LAB 76 is therefore possible and can effectively increase the antioxidant effects. These results can be applied to the development of improved foods and cosmetic materials.

Quantitative Analysis of Resveratrol in Mulberry Leaves (뽕잎의 품종별.시기별 resveratrol 함량 변이)

  • Kim, Hyun-Bok;Kim, Jung-Bong;Kim, Sun-Lim;Koh, Seong-Hyouk;Seok, Young-Seek;Kim, Yong-Soon;Sung, Gyoo-Byung;Kang, Pil-Don
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • Resveratrol has been associated with reduced cardiovascular disease and reduced cancer risk. This phytochemical has been reported in a number of plant species including grapes, peanuts and pine trees in response to stress such as fungal infection, heavy metal ions or UV irradiation. The objective of this study was to determine the resveratrol contents in leaves of mulberry varieties at different collecting times. Quantitative analysis of 16 cultivars showed a range of $102{\sim}466{\mu}g/100g$ on dry weight basis (which is equivalent to $25{\sim}116.5{\mu}g/100g$ on fresh weight basis). Resveratrol contents in mulberry leaves was higher in autumn than spring, and higher in fully matured leaves than in juvenile leaves. Among the tested samples, 'Kaeryangppong', 'Sugeppong' and 'Cheongilppong' collected in the middle of October showed high resveratrol contents of $838{\mu}g/100g$, $803{\mu}g/100g$, $800{\mu}g/100g$ on dry weight basis, respectively. Especially mulberry leaves dried in the shade showed of $1,030{\mu}g/100g$ on dry weight basis in resveratrol content, this result may contribute to utilization of mulberry leaves.

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation (파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과)

  • Choi, Hyo Gil;Kwon, Joon Kook;Moon, Byoung Yong;Kang, Nam Jun;Park, Kyoung Sub;Cho, Myeong Whan;Kim, Young Cheol
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.

Variation in bioactive principles and bioactive compounds of Rosa rugosa fruit during ripening (해당화 열매 성숙단계에 따른 생리활성 및 기능성 물질 변화 분석)

  • Kwak, Minjeong;Eom, Seung Hee;Gil, Jinsu;Kim, Ju-Sung;Hyun, Tae Kyung
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.236-245
    • /
    • 2019
  • Fruit ripening is a genetically programmed process involving a number of biochemical and physiological processes assisted by variations in gene expression and enzyme activities. This process generally affects the phytochemical profile and the bioactive principles in fruits and vegetables. To appraise the variation in bioactive principles of fruits from Rosa rugosa during its ripening process, we analyzed the changes in antioxidant and anti-elastase activities and polyphenolic compounds during the four ripening stages of fruits. Overall, an extract of unripe fruits contained the highest levels of total phenolic and flavonoid contents, radical scavenging activity, reducing power, oxygen radical antioxidant capacity, and elastase inhibitory activity, compared with the extracts of fruits at other stages of ripening. Additionally, we found that the reduction of flavonoid content occurs because of decreased transcriptional levels of genes involved in flavonoid biosynthesis pathway during the ripening process. Based on HPLC analysis, we found that the extract of unripe fruits contained the highest amount of myricetin, caffeic acid, chlorogenic acid, syringic acid, and p-coumaric acid and suggested that the antioxidant and anti-elastase activities of the extract obtained from stage 1, should be mediated by the presence of these compounds. Additionally, we analyzed the interaction sites and patterns between these compounds and elastase using the structure-based molecular docking approach, and suggested that chlorogenic acid strongly interacted with elastase. Together, these findings suggest that the maturity of fruits has profound effects on the pharmaceutical value of R. rugosa.