• Title/Summary/Keyword: phytate content

Search Result 57, Processing Time 0.03 seconds

Molecular and Biochemical Characteristics of ${\beta}$-Propeller Phytase from Marine Pseudomonas sp. BS10-3 and Its Potential Application for Animal Feed Additives

  • Nam, Seung-Jeung;Kim, Young-Ok;Ko, Tea-Kyung;Kang, Jin-Ku;Chun, Kwang-Hoon;Auh, Joong-Hyuck;Lee, Chul-Soon;Lee, In-Kyu;Park, Sunghoon;Oh, Byung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1413-1420
    • /
    • 2014
  • Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The ${\beta}$-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structure-based sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required $Ca^{2+}$ or $Fe^{2+}$ for phytase activity, indicating that PsBPP hydrolyzes insoluble $Fe^{2+}$-phytate or $Ca^{2+}$-phytate salts. The optimal temperature and pH for the hydrolysis of $Ca^{2+}$-phytate by PsBPP were $50^{\circ}C$ and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed $Ca^{2+}$-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.

Minerals, Oxalate and Phytate Contents of Recommended Soybean Cultivars in Korea (국산 콩 장려품종의 Minerals, Oxalate 및 Phytate 함량)

  • Kim, Ki-Chan;Hwang, In-Guk;Yoon, Gun-Mook;Song, Hang-Lin;Kim, Hong-Sig;Jang, Keum-Il;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.870-878
    • /
    • 2009
  • This study was conducted to select the soybean cultivar to minimize the formation of calcium oxalate, and investigate the ingredients for total oxalate (Ox), phytate ($InsP_6$) and minerals such as calcium (Ca), magnesium (Mg), sodium (Na), zinc (Zn), and potassium (K) in 113 recommended soybean cultivars in Korea. Ca content ranged from 0.586 mg/g in Saealkong to 3.177 mg/g in Daolkong, and Mg content ranged from 0.559 mg/g in Taekwankong to 3.085 mg/g of dry seed in Seonheukkong. The total oxalate content ranged from 1.24 mg/g in Seonheukkong to 3.81 mg/g in Ilmikong, and InsP6 content ranged from 0.43 mg/g in Mailikong to 4.72 mg/g of dry seed in Dagikong. In the cross-correlation analysis for the contents of Ca, Mg, Ox and $InsP_6$, Seonheukkong and Danmi2 were selected to minimize the formation of calcium oxalate because the contents of Ca and $InsP_6$ were much higher than the content of Ox. These cultivars could be useful for producing soy foods beneficial to populations at risk for calcium oxalate kidney stones and for improved mineral bioavailability.

Acid Production and Phytate Degradation using a Leuconostoc mesenteroides KC5l Strain in Saccharified-Rice Suspension (현미 당화액에서 Leuconostoc mesenteroides KC51 균주에 의한 산의 생성과 Phytate의 분해)

  • In, Man-Jin;Choi, Seo-Yeon;Kim, Hye-Rim;Park, Dan-Bi;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • A saccharified-rice was fermented using Leuconostoc(Ln.) mesenteroides KC51 strain in various dry matter (DM) contents (4%, 8%, and 12%) at $30^{\circ}C$ for 18 h. The changes of viable cell number, acid production and phytate degradation in saccharified-rice during fermentation were investigated. The viable cell population of Ln. mesenteroides KC51 was increased rapidly in proportion to DM contents during the 9 h of cultivation. The changes of pH and titratable acidity in saccharified-rice were dependent on DM contents. At high DM content (12%), the viable cell number of Ln. mesenteroides KC51 increased to 9.56 log CFU/g after 6 h of fermentation. The pH and titratable acidity reached to pH 3.38 and 0.93% after 18 h of fermentation, respectively. The phytate, known as an antinutrient factor, in saccharified-rice was degraded by Ln. mesenteroides KC51 cultivation. The decrease of phytate during fermentation approximately coincided with the increase of Ln. mesenteroides KC51 population observed in fermented saccharified-rice. Regardless of DM contents, the levels of phytate were reduced to around 50% of initial concentration.

Effect of Transgenic Rhizobacteria Overexpressing Citrobacter braakii appA on Phytate-P Availability to Mung Bean Plants

  • Patel, Kuldeep J.;Vig, Saurabh;Nareshkumar, G.;Archana, G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1491-1499
    • /
    • 2010
  • Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-phosphorus (P) available to plants. In the present study, the Citrobacter braakii phytase gene (appA) was overexpressed in rhizobacteria possessing plant growth promoting (PGP) traits, for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broadhost-range expression vector pBBR1MCS-2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains), and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying levels of phytase activity, ranging from 10-folds to 538-folds higher than the corresponding control strains. The transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed the highest expression of phytase (~8 U/mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having the ability to secrete organic acid showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA overexpressing rhizobacteria showed increased P content, and dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semisolid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of the overexpression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.

Extraction and Purification of Rapeseed Protein (유채박 단백질의 추출 및 정제에 관한 연구)

  • Lee, Jang-Soon;Kang, Dong-Sub;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.780-785
    • /
    • 1990
  • In order to establish the effective extraction and purification process of rapeseed protein, the extraction solvents were compared with one another ; and the residues of glucosinolate and phytate and the extraction yield of protein, which had been extracted by 1% sodium hexa mata-phosphate(SHMP) and purified through isoelectric precipitation, acid-washing and UF concentration, were investigated. As for the condition for extraction of rapeseed proteins, the solvent of 1% SHMP(pH 8.0) turned out the most appropriate ; so far as the purification process for the elimination of glucosinolate and phytate was concerned, the acid-washing twice or the process of the acid-washing once and UF concentration was considered the most effective. The yield and content of rapeseed protein were 37.1% and 75.3% respectively in the case of the acid-washing twice, 42.1% and 72.4% respectively in the case of the acid-washing once and UF concentraction, Consequently, with the elimination effects of glucosinolate and phytate put into consideration, the process of isoelectric precipitation, acid-washing once(pH 3.5), neutralizing(pH 7.5), UF concentration and then freeze drying proved the most effective purification process.

  • PDF

Isolation of soybean mutants with high and low inorganic phosphorus

  • Sundaramoorthy, Jagadeesh;Seo, Yean Joo;Park, Gyu Tae;Lee, Jeong-Dong;Park, Soon-Ki;Seo, Hak Soo;Song, Jong Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.261-264
    • /
    • 2016
  • In soybean (Glycine max (L.) Merr.) seeds, phosphorus (P) is primarily stored in the form of phytate, which is generally indigestible by monogastric animals such as human, pig, poultry, and fish. Thus, this study was conducted to isolate soybean mutants with high available P. Inorganic P content was assessed in a total of 1,266 ethyl methanesulfonate (EMS) $M_4$ lines from the Pungsannamul cultivar. Among the tested lines, four EMS lines (PE379, PE432, PE2205, and PE2503) showed higher mean inorganic P ($1.21-1.56gkg^{-1}$) than did the Pungsannamul cultivar ($0.90gkg^{-1}$). Additionally, six EMS lines (PE718, PE828, PE1466, PE1552, PE3378, and PE3386) showed lower mean inorganic P ($0.38-0.60gkg^{-1}$). The high inorganic P mutants isolated in this study will be further investigated for phytate and total P levels. Moreover, the high and low inorganic P lines will be utilized in a future study of the biochemical pathway of phytate.

The Effect of Protein Extraction pH on the Components of Sesame Protein Concentrates (단백질 추출 pH가 참깨 농축단백질의 성분에 미치는 영향)

  • 박정륭;김은정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.613-618
    • /
    • 1995
  • This study was carried out to investigate the effect of extracting pH on the components and color of seasame protein concentrate(SPC). The protein contents of SPC by extracted at pH 2.0, 7.0, 9.0 and 11.0 were 60.57, 67.72, 79.50 and 83.44%, respectively. Most of the phytates were removed in SPC extracted at pH 7.0, 9.0 and 11.0, but the phytate content of SPC extracted at pH 2.0 was about the same as that of defatted sesame flour. The highest decrease of phytate was found in SPC extracted at pH 11.0(94.80%). SPC extracted at pH 2.0 contained the highest amount of Ca, Mg, Fe and Zn than those in other SPC prepared, while highest amount of Cu was found in SPC extracted at pH 11.0. Sodium content was similar among all the SPC prepared. SPC extracted at pH 7.0 resulted in brighter clor, but SPC extracted at pH 11.0 showed a little darker in appearance.

  • PDF

Effects of Protein Bypass Treatments in Oilseed Meals on Availability of Mineral in Sheep (박류의 단백질 Bypass 처리가 면양의 광물질 이용효율에 미치는 영향)

  • Park, Woong-Yeoul
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.3
    • /
    • pp.331-339
    • /
    • 2008
  • The effects of heat and formaldehyde treatments of soybean meal and rapeseed meal on ruminal release of minerals from the meals were studied on three sheep fitted with rumen cannula. Oilseed meals were treated at 133, $143^{\circ}C$ for 3h or added with formaldehyde at a level of 3, 5g/kg. The ruminal release of P, Ca, Mg, Cu, Fe and Zn from the oilseed meals was examined using the nylon bag technique. Effective degradabilities of minerals in the oilseed meals were reduced by both treatments. The results suggest that rumen bypass treatments of oilseed meals prevent the release of minerals from the meals during rumen digestion and suppress the availability of mineals for ruminants. Eventually, the increase of heavy metal pollution in soil is anticipated due to the increase of mineral content in the feces of ruminants by ruminal protein bypass treatments.

  • PDF

Effect of Ultrafiltration on the Components of Sesame Protein Concentrates (한외여과가 참깨박 농축단백질의 성분에 미치는 영향)

  • Jeon, Jeong-Ryae;Park, Jyung-Rewng;Kim, Jin;Yoon, See-Hye
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.2
    • /
    • pp.63-71
    • /
    • 1995
  • Defatted sesame flour is the by-products obtained after oil extracting process. Although this flour has high quality and quantity of protein its use is limited only for animal feed and fertilization. Sesame seeds contain antinutrients such as oxalate, phytate and phenol compounds and these compounds lower their nutritive value. recently, ultrafiltration(UF) has been used to concentrate protein from various food sources. This study was carried out to examine the effects of UF with different membrane pore size on the components of sesame protein concentrates including antinutrients and to compare with that of conventional acid-precipitated sesame protein isolate. The protein contents of sesame protein concentrates prepared by JF using 10K, 30K, 100K were 84.2%, 82.7%, 76.4% and the protein yields were 36.44%, 34.69, 31.43% and the protein contents was 88.7% Alkali extraction process at pH 9.0 followed by UF technique reduced oxalate and phytate content. There were 85% and 94% reduction of oxalate and phytate content by UF with membrane pore size of 100K daltons, respectively. However, the content of total phenol compounds was not reduced by this method. About 99% of calcium and 50% of zinc were removed by UF with membrane of 100K daltons. total essential amino acid contents of sesame protein concentrates prepared by UF were decreased slightly when compared with acid-precipitated sesame protein concentrate.

  • PDF

Response of broiler chickens to diets containing different levels of sodium with or without microbial phytase supplementation

  • Akter, Marjina;Graham, Hadden;Iji, Paul Ade
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.87-97
    • /
    • 2019
  • Phytate induced excessive mineral excretion through poultry litter leads to poor performance and environmental pollution. Exogenous microbial phytase supplementation to poultry diets reduce the environmental excretion of nutrient and improve bird's performance. However, excessive dietary sodium (Na) level may hinder the phytase-mediated phytate hydrolysis and negate the beneficial effects of phytase. Therefore, this experiment was conducted to investigate the effects of different concentration dietary Na on phytase activity and subsequent impact on broiler performance, bone mineralisation and nutrient utilisation. In this study, six experimental diets, consisting of three different levels of Na (1.5, 2.5, or 3.5 g/kg) and two levels of microbial phytase (0 or 500 U/kg) were formulated by using $3{\times}2$ factorial design. The six experimental diets were offered to 360 day-old Ross 306 male chicks for 35 days, where, each experimental diet consisted of 6 replicates groups with 10 birds. Along with growth performance, nutrient utilization, intestinal enzyme activity, dry matter (DM) content of litter and mineral status in bone were analysed. Dietary Na and phytase had no effect on bode weight gain and feed intake. Birds on the low Na diet showed higher (p < 0.05) feed conversion ratio (FCR) than the mid-Na diets. High dietary Na adversely affected (p < 0.001) excreta DM content. Phytase supplementation to the high-Na diet increased (p < 0.01) the litter ammonia content. High dietary Na with phytase supplementation improved ($Na{\times}phytase$, p < 0.05) the AME value and ileal digestibility of Ca and Mg. The total tract retention of Ca, P, and Mg was reduced with high Na diet, which was counteracted by phytase supplementation ($Na{\times}phytase$, p < 0.001). The diets containing mid-level of Na improved (p < 0.001) the function of Na-K-ATPase and Mg-ATPase in the jejunum. The overall results indicate that high dietary Na did not affect phytase activity but influenced the nutrient utilization of birds, which was not reflected in bird overall performance.