• Title/Summary/Keyword: physiological stress

Search Result 1,366, Processing Time 0.029 seconds

Mechanisms of the Autonomic Nervous System to Stress Produced by Mental Task in a Noisy Environment (소음상황에서 인지적 과제에 의해 유발된 스트레스에 대한 자율신경반응의 기제)

  • Sohn, Jin-Hun;Estate M. Sokhadze;Lee, Kyung-Hwa;Kim, Yeon-Kyu;Park, Sangsup
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.216-221
    • /
    • 1999
  • A mental task combined with noise background is an effective model of laboratory stress for study of psychophysiology of the autonomic nervous system (ANS). The intensity of the background noise significantly affects both a subjective evaluation of experienced stress level during test and the physiological responses associated with mental load in noisy environments. Providing tests of similar difficulties we manipulated the background noise intensity as a main factor influencing a psychophysiological outcome and the analyzed reactivity along withe the noise intensity dimension. The goal of this study was to identify the patterns of ANS responses and the relevant subjective stress scores during performance of word recognition tasks on the background of white noise (WN) of the different intensities (55, 70 and 85 dB). Subjects were 27 college students (19-24 years old). BIOPAC, Grass Neurodata System and AcqKnowlwdge 3.5 software were used to record ECG, PPG, SCL, skin temperature, and respiration. Experimental manipulations were effective in producing subjective and physiological responses usually associated with stress. The results suggested that the following potential autonomic mechanisms might be involved in the mediation of the observed physiological responses: A sympathetic activation with parasympathetic withdrawal during mild 55 and 70dB noise (featured by similar profiles) and simultaneous activation of sympathetic and parasympathetic systems during intense 85dB WN. The parasympathetic activation in this case might be a compensatory effect directed to prevent sympathetic domination and to maintain optimal arousal state for the successful performance on mental stress task. It should be mentioned that obtained results partially support Gellhorn's (1960; 1970) "tuning phenomenon" as a possible mechanism underlying stress response.

  • PDF

Physiological and Biochemical Responses of Local Arundinella hirta Collections in Korea against Drought Stress

  • Khan, Inam;Min, Chang-Woo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Drought is one of the key limiting factors that adversely affects the growth and productivity of crop plants. For the enhancement of drought tolerance in crop plants, the identification of basic mechanisms of a plant to drought stress is necessary. In this study, we compared physiological and biochemical responses of five local Arundenilla hirta ecotypes to drought stress. These ecotypes were previously collected from various parts of Korean peninsula, including Youngduk, Gunsan, Jangsoo, Jinju-1 and Yecheon. A. hirta plants were exposed to drought stress for 14 and 17 days respectively, followed by re-watering for 3 days. The results showed that the lipid peroxidation (MDA), hydrogen peroxide ($H_2O_2$), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, and proline level were significantly increased while the chlorophyll content was decreased by drought stress in A. hirta leaves. The highest proline content and DPPH scavenging activity were shown in Ecotype of Youngduk with least MDA and $H_2O_2$ levels while the highest MDA and $H_2O_2$ contents, and least proline and DPPH levels were shown in Gunsan, respectvely. These results indicate that the Youngduk is the most tolerant and Gunsan is the most sensitive ecotype among the five different collections. Together, these results provide a new insight of overall physiological responses of A. hirta to drought stress.

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Nutritional Sciences
    • /
    • v.5 no.4
    • /
    • pp.228-233
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein(MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

The Effects of Road Transportation on Some Physiological Stress Measures in Goats

  • Rajion, M.A.;Mohamed, I.;Zulkifli, I.;Goh, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1250-1252
    • /
    • 2001
  • A study to assess the physiological stress responses in goats that were subjected to road transportation was carried out using 10 Kacang crossbred does. Five does were transported in the morning with another five transported in the afternoon covering a distance of 46 km in an open-truck at an average speed of 55 km/h. Immediately following the road transportation, there were dramatic increases in neutrophil:lymphocyte ratios and plasma glucose concentrations but plasma cholesterol concentrations and body temperature were not affected. The neutrophil:lymphocyte ratios and plasma glucose concentrations appear to be reliable indicators of stress in goats.

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11b
    • /
    • pp.1171-1177
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over-or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Metallothioneins and oxidative stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11a
    • /
    • pp.73-82
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (U) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Overexpressed Mitochondrial Thioredoxin Protects PC12 Cells from Hydrogen Peroxide and Serum-deprivation

  • Lee, Yun-Song;Yu, Seung-A
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Oxidative damage to mitochondria is a critical mechanism in necrotic or apoptotic cell death induced by many kinds of toxic chemicals. Thioredoxin (Trx) family proteins are known to play protective roles in organisms under oxidative stress through redox reaction by using reducing equivalents of cysteines at a conserved active site, Cys-X-X-Cys. Whereas biological and physiological properties of Trx1 are well characterized, significance of mitochondrial thioredoxin (Trx2) is not well known. Therefore, we addressed physiological role of Trx2 in PC12 cells under oxidative stress. In PC12 cells, transiently overexpressed Trx2 significantly reduced cell death induced by hydrogen peroxide, whereas mutant Trx2, having serine residues instead of two cysteine residues at the active site did not. In addition, stably expressed Trx2 protected PC12 cells from serum deprivation. These results suggest that Trx2 may play defensive roles in PC12 cells by reducing oxidative stress to mitochondria.

A study of the moderating effect of social support on the relationship between job stress responses and occupational accident/illness (직무스트레스 반응이 상해와 질병에 미치는 효과 및 사회적 지원의 조절효과에 관한 연구: 강원지역을 중심으로)

  • Ahn, Kwan-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this paper is to review the moderating effect of social support on the relationship between job stress responses(physiological response, psychological response, behavioral response) and occupational accidents/illness. Based on the responses from 187 employees in small & medium manufacturing industry, hierarchical regressional analysis showed that physiological response has positive relationship with accidents and illness, and psychological response has positive relationship with accident. Social support has partly moderating effect on the relationship between job stress responses and occupational accidents/illness.

The relationship between job stress responses and occupational accident/illness, and the moderating effect of social support (직무스트레스 반응이 상해와 질병에 미치는 효과 및 사회적지원의 조절효과에 관한 연구)

  • Ahn, Kwan-Young
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.317-327
    • /
    • 2008
  • The purpose of this paper is to review the relationship between job stress responses(physiological response, psychological response, behavioral response) and occupational accidents/illness, and the moderating effect of social support. Based on the responses from 187 employees in small & medium manufacturing industry, hierarchical regressional analysis showed that physiological response has positive relationship with accidents and illness, and psychological response has positive relationship with accident. Social support has partly moderating effect on the relationship between job stress responses and occupational accidents/illness.

  • PDF

Aluminum Stress Inhibits Root Growth and Alters Physiological and Antioxidant Enzyme Responses in Alfalfa (Medicago sativa L.) Roots (알팔파 뿌리에 있어서 알루미늄 스트레스 처리에 따른 뿌리 생장 저해와 생리 및 항산화 반응의 변화)

  • Min, Chang-Woo;Khan, Inam;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.298-302
    • /
    • 2019
  • Acidic soil significantly reduces crop productivity mainly due to aluminum (Al) toxicity. Alfalfa (Medicago sativa L.) roots were exposed to aluminum stress (Al3+) in calcium chloride (CaCl2) solution (pH4.5) and root growth, physiological and antioxidant enzyme responses were investigated. The root growth (length) was significantly inhibited after 48 h of aluminum stress imposition. Histochemical staining with hematoxylin indicated significant accumulation of aluminum in Al stress-treated root tissues. Histochemical assay were also performed to detect superoxide anion, hydrogen peroxide and lipid peroxidation, which were found to be more in root tissues treated with higher aluminum concentrations. The enzymatic activity of CAT, POD and GR in root tissues was slightly increased after Al stress treatment. The result suggests that Al stress alters root growth in alfalfa and induces reactive oxygen species (ROS) production, and demonstrates that antioxidant enzymes involved in detoxification of Al-mediated oxidative stress.