• Title/Summary/Keyword: physiological stress

Search Result 1,366, Processing Time 0.026 seconds

The Relationship between Fatigue, Stress resistance and Emotion in Korean middle aged women (중년여성의 피로와 스트레스 저항력 그리고 정서와의 관계 연구)

  • Lee, Jung-Eun;Park, Pyung-Woon;Hyun, Kyung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1145-1150
    • /
    • 2011
  • The purpose of this study was to determine the relationships between fatigue, stress resistance and emotion in middle aged women under the developmental crisis using a brain wave measurement which is a cranial physiological index. From March 2005 to June 2009, women aged between 35 and 65 (N=4402) who volunteered for a brain wave test at the KRIJUS( Korea Research Institute of Jungshin Science) were monitored the brain function quotient (tension degree, anti-stress quotient and emotional quotient). Correlation and time-series linear analysis revealed significantly the relationships between fatigue, stress resistance and emotion. Also, according to the emotional propensity, cheerful propensity was higher in the cheerful and depressed propensity, positive propensity was higher in the positive and negative propensity, during the whole test, cheerful and positive propensity was higher. Therefore, it is necessary to increase the quality of life by decreasing fatigue and stress level of the middle-aged women to maintain and increase their individual health and the better family relationship.

The Antistress Effects of Semen Ziziphi Spinosae Extract (산조인(酸棗仁) 추출물의 항스트레스 효과)

  • Lim, Dong-Seok;Kim, Eun-Jung;Cho, Su-In;Lee, Dong-Won
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.1
    • /
    • pp.107-116
    • /
    • 2003
  • The effects of Semen Ziziphi Spinosae extract were tested for the anti-stress action. 100g of crude drug of Semen Ziziphi Spinosae was extracted with pure water and the total extractive was evaporated under reduced pressure to give 10.7g. ICR male mice($20{\pm}2g$) were fed orally with the dose of 100mg/kg/day for five days. Foot shock was given to make experimental environment of physiological stress. Foot shock mice were placed individually in the foot shock compartments and sociopsychological mice were placed nonfoot shock compartment-the side of foot shock compartments. Mice were exposed to sociopsychological stress by restraining and seeing foot shock stressed mice for one hour for five days. Semen Ziziphi Spinosae extract administered group showed a significant decrease of serum corticosterone secretion compared with control group. Noradrenaline secretions in the dorsal cortex of brain were increased but not significant. Lipid peroxidation of the liver of mice were tested by measuring malondialdehyde, and Semen Ziziphi Spinosae extract had tendency of decreasing lipid peroxidation but not significant. But Semen Ziziphi Spinosae extract administration had the effect of decreasing serum level of aspartate aminotransferase and malondialdehyde. These results suggest that Semen Ziziphi Spinosae extract can effectively rid the sociopsychological stress and stress concerned diseases.

  • PDF

Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality

  • Wang, Dingkang;Zhang, Min;Huang, Jun;Zhou, Rongqing;Jin, Yao;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Effects of Postpartum Massage Program on Stress response in the Cesarean section Mothers (산후마사지프로그램이 제왕절개술 산모의 스트레스 반응에 미치는 효과)

  • 이성희
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.2
    • /
    • pp.488-497
    • /
    • 2000
  • The purpose of this study was to explore the effect of a postpartum massage program on stress response in the Cesarean section mothers. The study focused on evaluating the effect of postpartum massage program on mood, anxiety, skin temperature and concentration of saliva and breast milk immunoglobulin A in the Cesarean section mothers. This study was designed as a nonequivalent control group pretest-posttest quasi-experimental study. Twenty-eight Cesarean section mothers were selected as experimental group, whereas twenty- seven were control group. The postpartum massage program consisted of 20 minutes of warm-up, massage and ending phases and used once a day. During each program, there were 4 minutes of warm-up, 14 minutes of massage on back, axillary and breasts, and 2 minutes of ending. Massage were used for the experimental group by the same investigator 20 times per minute. The massage technique used were efflurage, petrissage, accupressure, kneading and vibration. Skin temperature was monitored with YSI Tele-thermometer(Simpson electric Co., USA) before and after massage program. The concentration of immunoglobulin A in saliva and breast milk was analyzed by immunoturbididimeter assay(Cobas INTEGRA, Swiss) before and after massage program. Also at this time mood and anxiety were measured by self-report. The data were analyzed using SPSS version 7.5 and hypothesis was tested with ANCOVA analysis and Pearson coefficient correlation. The results were as follows : 1) Score of mood increased significantly after use of postpartum massage program. 2) Level of anxiety decreased significantly after use of postpartum massage program. 3) Skin temperature increased significantly after use of postpartum massage program. 4) Concentration of saliva immunoglobulin A increased significantly after use of postpartum massage program. 5) Concentration of breast milk immunoglobulin A did not change significantly after use of postpartum massage program. 6) After use of postpartum massage program, there was significant correlation between psychological stress response and physiological stress response.The results suggest that postpartum massage program can be effective nursing intervention to reduce stress response in the postpartum mothers under stress.

  • PDF

Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene

  • Kumar, Vinay;Shriram, Varsha;Kishor, P.B. Kavi;Jawali, Narendra;Shitole, M.G.
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • [ ${\Delta}^1$ ]pyrroline-5-carboxylate synthetase (P5CS) is a proline biosynthetic pathway enzyme and is known for conferring enhanced salt and drought stress in transgenics carrying this gene in a variety of plant species; however, the wild-type P5CS is subjected to feedback control. Therefore, in the present study, we used a mutagenized version of this osmoregulatory gene-P5CSF129A, which is not subjected to feedback control, for producing transgenic indica rice plants of cultivar Karjat-3 via Agrobacterium tumefaciens. We have used two types of explants for this purpose, namely mature embryo-derived callus and shoot apices. Various parameters for transformation were optimized including antibiotic concentration for selection, duration of cocultivation, addition of phenolic compound, and bacterial culture density. The resultant primary transgenic plants showed more enhanced proline accumulation than their non-transformed counterparts. This proline level was particularly enhanced in the transgenic plants of next generation ($T_1$) under 150 mM NaCl stress. The higher proline level shown by transgenic plants was associated with better biomass production and growth performance under salt stress and lower extent of lipid peroxidation, indicating that overproduction of proline may have a role in counteracting the negative effect of salt stress and higher maintenance of cellular integrity and basic physiological processes under stress.

Stress analysis according to the different angulation of the implant fixture (임플란트 고정체의 매식 경사에 따른 응력분석)

  • Lee, Tae-Yup;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Bending moments results from offset overloading of dental implant, which may cause stress concentrations to exceed the physiological capacity of cortical bone and lead to various kinds of mechanical failures. The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different angulated placement of dental implant in mandibular posterior missing areas. The three kinds of finite element model, were designed according to 3 main configurations: Model 1(parallel typed placement of 2 fixtures), Model 2(15. distal angulated placement of one fixture on second molar area), Model 3(15. mesial angulated placement of one fixture on second molar area). The cemented crowns for mandibular first and second molars were made on the two fixtures (4mm 11.5). Three-dimensional finite element models by two fixtures were constructed with the components of the implant and surrounding bone. A 200N vertical static load were applied to the center of central fossa and the point 2mm apart from the center of central fossa on each model. The preprocessing, solving and postprocessing procedures were done by using FEM analysis software NISA/DISPLAY IV Version 10.0((Engineering Mechanics Research Corporation, USA). Von Mises stresses were evaluated and compared in the supporting bone, fixtures, and abutment. The results were as following : (1) Under the point loading at the central fossa, the direction of angulated fixture affected the stress pattern of implants. (2) Under the offset loading, the position of loading affected more on the stress concentration of implants compare to the angulated direction of implants. The results had a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the placement angulation of implant fixture is placed toward mesial or distal direction. In designing of the occlusal scheme for angulated placement, placing the occlusal contacts axially during chewing appears to have advantages in a biomechanical viewpoint.

Effects of Physical Activity and Melatonin in a Rat Model of Depression Induced by Chronic Stress (자유로운 신체운동과 멜라토닌이 우울장애 동물모델에 미치는 효과)

  • Seong, Ho Hyun;Jung, Sung Mo;Kim, Si Won;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose: Stress, depending on its intensity and duration, results in either adaptive or maladaptive physiological and psychological changes in humans. Also, it was found that stressful experiences increase the signs of behavioral despair in rodents. On the other hand, exercise and melatonin treatment is believed to have many beneficial effects on health. Thus, this study was designed to evaluate the anti-depressant effects of physical activity and melatonin against chronic stress-induced depression in rats. Methods: Adult male Sprague-Dawley(SD) rats(200-250g, 7 weeks of age) were subjected to depression induced by chronic stress. Chronic depression was induced with forced-swim stress (FSS) and repeated change of light-dark cycle for 4 weeks. In the last 2 weeks, some rats were confined in a cage enriched with a running wheel, seesaw and chewed a ball from 19:00 to 07:00 every day. Melatonin was injected intra-peritoneally (I.P), and the rats received intraperitoneal injections of melatonin (15 mg/kg). The Forced Swim Test (FST) was performed to evaluate the immobility behaviors of rats for a 5 min test. Results: It was found that, the immobility time in FST was significantly (p<.05) lower in physical exercise ($M=58.83{\pm}22.73$) and melatonin ($M=67.33{\pm}37.73$) than in depressive rats ($M=145.93{\pm}63.16$) without physical activity. Also, TPH positive cell in dorsal raphe was significantly (p<.05) higher in exercise ($M=457.38{\pm}103.21$) and melatonin ($M=425.38{\pm}111.56$) than in depressive rats ($M=258.25{\pm}89.13$). Conclusion: This study suggests that physical activity and melatonin produces antidepressant-like effect on stress-induced depression in rats. So, physical exercise and melatonin may be a good intervention in depression patients.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.