• Title/Summary/Keyword: physics misconceptions

Search Result 18, Processing Time 0.027 seconds

Constructivist Science Education and the Map of Students' Physics Misconceptions (구성주의적 과학교육과 학생의 물리 오개념 지도)

  • 송진웅
    • The Mathematical Education
    • /
    • v.42 no.2
    • /
    • pp.87-109
    • /
    • 2003
  • This paper aims to review the overall development of constructivist approaches in science education research from two different perspectives, that is a summary of the past development in science education in general and a report of the outline of a recent research project on students' physics misconceptions in particular. In the summary of the past development of constructivist science education the introduction of constructivism as well as its psychological and philosophical backgrounds are briefly reported. Then main findings of the researches of constructivist approach are discussed in terms of the features of students' misconceptions, of the ways of effective conceptual change, of the implications toward school science education, and of the criticisms given to the constructivist approach. In the report of a recent development in addition to its background necessity and implications, the research structure and the format of the data analysis of the study on the map of students' physics misconceptions are presented. It is particularly emphasized that the practical informations and suggestions for actual teaching of school science, such as the database(DB) of students' misconceptions and teaching guides, are of most practical and effective values in order to maximize the advantage of the constructivist approach to science education.

  • PDF

Developing a Web-Based System for Testing Students' Physics Misconceptions (WEBSYSTEM) and its Implementation

  • Kim, Min-Kee;Choi, Jae-Hyeok;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.105-119
    • /
    • 2007
  • Several studies have attempted to test students' misconceptions of physics and to provide teaching strategies in order to repair them. The results from these studies have revealed that the diagnosis of students' misconception is crucial, although they often failed to grasp the practice of its implementation. In terms of being a type of methodology for science education, the Internet allows large-scale surveys and investigations to be carried out in a relatively short period of time. This paper reports the results of the development, implementation, and evaluation of a WEb-based SYStem for TEsting students' Misconceptions in physics (WEBSYSTEM) aimed at three groups (science educational researchers who study students' physics conceptions using the system as a detector, school science teachers who practice it as an instructional material, and students who benefit from it for their self-directed learning). The web-based testing system is based on a review of the instructional development strategies of ADDIE (Gustafson, Branch, 2002; Rha, Chung, 2001). Results showed that WEBSYSTEM could work effectively as a multi-purposed tool for the three target groups with a further partial revision, providing educational researchers with resourceful data to study students' misconceptions in physics. Issues of administrative strategies, reexamination of questionnaires, and international collaboration via WEBSYSTEM are discussed.

Pre-service Science Teachers' Understanding of Students' Misconceptions in Physics and Perceptions on "Teacher as a Researcher" through the Research Experience (예비 과학교사의 연구 수행 경험이 학생의 물리 오개념에 대한 이해 및 '연구자로서의 교사'에 대한 인식에 미치는 영향)

  • Ko, Yeonjoo;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.449-457
    • /
    • 2014
  • Recent studies have shown that teachers should have be aware of and understand students' misconceptions, which is one of the major components of PCK. However, teachers often have difficulties in understanding misconceptions and in applying appropriate instructional strategies to change misconceptions. Thus, we designed a method course for pre-service teachers (PSTs) adapting the concept of "teacher as researcher". In the course, PSTs conducted research to investigate students' misconceptions in physics. Twenty-five female PSTs participated in the study. They went through the research process including creating question items, administering items to their target populations, collecting and analyzing student responses, and writing a research paper. Data source included individual interviews with the PSTs, field notes during classroom observation and PSTs' research papers. The results were as follows. First, the PSTs confirmed students' misconceptions and learning difficulties in physics. They experienced discrepancies between their conjecture and research findings. Second, PSTs developed the sophisticated understanding of students' misconceptions and appropriate teaching strategies. Third, the research experience provided the PSTs opportunities to reexamine their physics content knowledge while creating items and explaining scientific concepts. They realized that physics teachers should develop sound understanding of physics concepts for guiding students to have less misconception. Lastly, they realized the necessity of being a teacher as a researcher.

Use of Alternative Assessments to Rectify Common Students' Misconceptions: A Case Study of "mini-project" in GCE 'A' Level Physics in a Singapore School

  • Lim, Ai Phing;Yau, Che Ming
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.730-748
    • /
    • 2008
  • Students often have tenacious physics misconceptions and many studies were conducted on engendering conceptual change. Correspondingly, there is much literature on alternative assessment and its role in student learning. This is a comparison study on using alternative assessments to improve common students' misconceptions in GCE Advanced Level Physics. This research also aims to affirm alternative assessment as a valid tool for learning and promote its use. This study involved two classes with 24 students each. For four weeks, electromagnetism was taught to students using the same classroom pedagogies but with different assignments. The control group completeda standard drill-and-practice assignment while the experimental group finished an alternative assessment. From the preliminary results, students who undertook the alternative assessment and the traditional assessment both improved, however, the treatment group did not perform statistically significantly better than the control group. The reasons will be discussed and commented and it is expected to have significant improvement on rectifying misconceptionsupon next batch of experimentation groups.

Middle school students' conceptions related to electric current and their explanation after observation of related phenomena before school instruction (중학생의 전류에 대한 학습전 개념과 관계 현상 관찰후의 설명)

  • Kim, Young-Min;Park, Youn-hee;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 1990
  • The purposes of this study are to investigate Korean middle school students' conceptions related to electric current, and to analyze their changes in explanations about current after their observations of the related phenomena The subjects of the study were 20 students from one middle school in Seoul The conclusions of the studty are as follows: 1, Korean middle school students have various misconceptions such as current consumption model, sequential model, monopole model, non-various current model, the most students have sequential model' 2. When an evidence is introduced, some students do not perceive the phenomena as the teacher attempts. 3. When an evidence was introduced, after observation of the evidence some of the students who had misconceptions changed their explanatios, which were not always correct explanations, and the others did not change their expanations, which their observations were mostly incorrect.

  • PDF

Comparing Misconceptions of Scientifically-Gifted and General Elementary Students in Physics Classes (초등학교 과학 영재와 일반 학생의 물리 오개념 비교)

  • Kwon, Sung-Gi;Kim, Ji-Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.476-484
    • /
    • 2007
  • The purpose of this study is to examine the misconception profiles of the scientifically-gifted and non-gifted children in terms of basic physics concepts and to compare them in terms of the types of differences in misconception as well as in their understanding of the concepts themselves. The subjects of this study were 75 scientifically-gifted children attending the Educational Center of Gifted Children in DNUE and 148 non-gifted children in elementary schools in Daegu city. For the purposes of this study, the basic concepts of physics (heat, electromagnetism, force, and light) which should be learned in an elementary school were selected with a review of related previous research and with an analysis of the 7th science curriculum. Next, a questionnaire was made which was made up of 20 multiple choice statement based items. Analysis of the results of the statement sections in the test, it was hoped, would reveal the difference between the scientifically-gifted and the non-gifted children's understanding, while the responses in the multiple choice items would suggest the differences between the two groups in terms of the misconceptions regarding physics concepts. The results of this study are as follows: First, although both the gifted and non-gifted children showed a low level of understanding of the concepts of heat, electromagnetism, force, and light, the gifted children' level of understanding of those physics concepts was proved to be significantly higher than the non-gifted, so it seems that the scientifically-gifted children have fundamentally understood the concepts in physics and have a higher level of understanding of them. Additionally, both the scientifically-gifted and non-gifted children' level of understanding of all the concepts was lower in the order of electromagnetism, heat, force, and light. This shows that both the scientifically-gifted and the non-gifted children have no difference in the level of understanding of any specific physics concept, but have similar levels of difficulty in every concept. Second, both the scientifically-gifted and non-gifted children showed similar types of misconceptions. However, the scientifically-gifted children had fewer misconceptions than the non-gifted. We suggest that scientifically-gifted children's misconceptions were not fixed yet, so there remained a possibility of them being corrected easily with appropriate instruction.

  • PDF

Analysis of Concepts Related to Heat and Temperature in Elementary and Secondary School Science Textbooks (초등.중등학교 과학교과서에 나타난 열, 온도 개념에 대한 분석)

  • Paik, Seoung-Hey;Park, Young-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.478-489
    • /
    • 2002
  • In this study, we identified the conceptions of heat and temperature on a basis of the science history, and analyzed the explanation types in elementary, and secondary school science textbooks. From these data, we tried to discover the cause of students' misconceptions. The results revealed that the explanation types of the textbooks don't include modem sight. Different conceptions developed in different era mixed in the textbooks. We can infer that students who learn heat and temperature concept by the textbooks could have misconceptions because of the above problems.

Development of an Instrument for Measuring Affective Factors Regarding Conceptual Understanding in High School Physics

  • Kim, Min-Kee;Ogawa, Masakata
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.6
    • /
    • pp.497-509
    • /
    • 2007
  • Among many remedial approaches against the increasing unfavorableness toward school science, one of the prevalent findings studied by affective experts is that students' achievement in science and their attitude toward it has a relatively weak relationship. In contrast, cognitive experts assert that the conceptual change involves more than cognitive aspects, and may be influenced by affective factors such as beliefs, motivation, learning attitudes, and sociocultural contexts. The latter regards continuous conceptual change as leading to better student understanding of science with variables of students' attitude toward science. As an initial step toward illuminating the affective-cognitive learning aspects of science, the purpose of this study is to develop an instrument for analyzing the relationship between students' conceptual understanding and affective factors. Cognitive questionnaires from the database of distribution in students' misconceptions of physics (DMP project), and affective questionnaires from the Relevance of Science Education (ROSE project) are integrated into our instrument. The respondents are high school students in Okayama prefecture, Japan. Through the pilot test, the authors integrated attitude toward science (AS) and interest inventory (II) from ROSE into cognitive understanding (CD) from DMP. Statistical methodologies such as factor analysis and item total correlation theoretically discerned the effective sixty-three items from the two original item pools. Having discussed two validity issues, the authors suggest ongoing research associated with our affective-cognitive research perspective.

Relationship between Pre-service Teachers에 Misconceptions and Understandings of Ideal Conditions about Heat and Temperature (교육대학생의 열과 온도에 대한 오개념과 이상조건 이해의 관계)

  • 권성기;최수정
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • Many idealizations and ideal conditions in physics have been an important role in understanding of the basic physics concepts and in solving physics problems. The purpose of this study was to explore the relationships of pre-service teachers' misconception of heat with their understanding of the ideal conditions involved in solving problems of heat and temperature. Test instruments were composed of two parts. One part was asked to answer the heat conceptions, the other to write statements in relations to ideal condition hidden in the process of heat problems solving. For this study, pre-service teachers who are in four major courses in the University of Education in a local city were selected and total numbers of pre-service teachers were 108 students. The framework was developed for classifying pre-service teachers response of open items of ideal conditions of heat domains. According to the framework, each types of response were coded, analyzed and processed with a SPSS/PC program. The results are as the followings. In the heat conceptions, most of students showed correct response, and there was no significant differences between major courses. In understanding of ideal conditions, students' responses of "idealized condition relevant to problem" showed 65.2% of them, and "not relevant idealized conditions" 15.5%, and no response 12.2%. In the 15.5% of students "not relevant idealized conditions", 10.5% of them did not explained correctly conditions, just simply 2.7% stated the laws in physics or formula, 1.6% generally, but irrelevantly described the idealized conditions. More importantly pre-service teachers showed very weak correlation between heat conception and understanding of ideal condition. Although we concluded there were no significant relationships of heat conception in understanding of ideal conditions in thermodynamics domain, these suggest that many other factors may influence understanding of ideal conditions in physics.

  • PDF

Science Teachers' Perception of the Refractive Index of Media (굴절률에 대한 과학교사들의 인식)

  • Park, Sang-Tae;Yeom, Jun-Hyeok;Yoon, Yeo-Won;Seok, Hyojun
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.334-338
    • /
    • 2017
  • This research aims at investigating science teachers' perception of the refractive index of materials, and thus achieving proper information transmission and teaching of refractive index. Specifically, we have made questionnaires on what physical factors influence the refractive index of a liquid easily available in secondary schools. It was found that 80.0% of science teachers perceived that the density has the greatest influence on the refractive index, among a variety of factors such as molecular structure, the number of molecules per unit volume, mass of each molecule, and the wavelength of light, to mention just a few. This may be due to the fact that current textbooks deal with the refraction of light based on analogy to a mechanical wave. Such a misunderstanding may lead to confusion and misunderstanding for students.