• Title/Summary/Keyword: physics education

Search Result 946, Processing Time 0.027 seconds

The Differences between Physicists' Expectations and Teachers' Representations about the Primary Physics Concepts in Elementary Schools (학문과 학자가 요구하는 초등학교 수준의 물리분야 기본개념과 교과와 교사가 인지하고 표현하는 기본개념의 일치도 연구)

  • Kwon, Nan-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.5
    • /
    • pp.535-550
    • /
    • 2007
  • The purpose of this study was the identifying differences between physicists' expectations and teachers' representations about the primary physics concepts in elementary schools. For this, the material subjects analyzed were the 7th curriculum, the textbooks of elementary school and the texts using at the department of physics in many universities. The primary physics concepts extracted from the texts were to be fundamental and basic. Also, they were restricted to the domain of dynamics. And besides, the human subjects were physicists, professors and students majoring physics of the graduate school, researchers of institutes or laboratories and elementary school teachers. At the result of this study showed the scholars and teachers have the different opinions.

  • PDF

A Comparative Analysis of Expert's and Novice's Thinking Processess in Solving Physics Problems (물리문제해결 실패자(초심자)와 성공자(전문가)의 문제해결 사고과정에 관한 연구)

  • Kwon, Jae-Sool;Lee, Seong-Wang
    • Journal of The Korean Association For Science Education
    • /
    • v.8 no.1
    • /
    • pp.43-55
    • /
    • 1988
  • This study intended to find the differences between expert's and novice's thinking processes when they solve physics problems. Five physics professors and twenty sophomore students in a physics department were participated in the study. The researcher investigated their thinking processes in solving three physics problems on NEWTON's law of motion. The researcher accepted so called "Thinking Aloud" method. The thinking processes were recorded and transfered into protocols. The protocols were analysised by problem solving process coding system which was developed by the researcher on the basis of Larkin's problem solving process model. The results were as follows: (1) There was no difference of time required in solving physics problem of low difficulty between expert and novices; but, it takes 1.5 times longer for novices than experts in solving physics problems which difficulties are high and average. (2) Novices used working forward strategy and working backward strategy at the similiar rate in solving physics problems which difficulties were average and low. while Novices mo mostly used working backward strategy in solving physic problems which difficulty was high. Experts mostly used working forward strategy in solving physics problems whose difficulties was average and low, however experts used working forward strategy and working backward strategy at the similiar rate in solving physics problem which difficulty was high. (3) Novices usually wrote only a few information on the diagram of figure they drawn, on the other hand experts usually wrote almost all the information which are necessary for solving the problems. (4) Experts spent much time in understand the problem and evaluation stage than novices did, however experts spent less time in plan stage than novices did. (5) Physics problems are solved in sequence of understanding the problem, plan, carrying out the plan, and evaluation steps regardless of problem difficulty.

  • PDF

Korean University Students' Understanding of Idealization in Mechanics and Its Implications for Physics Education

  • Song, Jin-Woong;Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.5
    • /
    • pp.906-923
    • /
    • 2001
  • This study investigated university students' (majoring physics education) understanding of some aspects of idealization frequently used in teaching and learning of physics, especially of mechanics. A total of 143 students were given a Questionnaire of six questions requiring written responses. Out of the six questions, the first three were concerned with basic idealized concepts, the next two with the making of the assumptions of ideal conditions for given problem settings, and the last with the identification of the idealization used in the given solution of a problem. Students' written responses were grouped into patterns and the relative frequencies of the patterns were counted. It was found that the students had limited understanding of the idealization and their ideas were diverse and frequently incorrect. The implications of the findings are discussed in relation to the roles of idealization in physics education.

  • PDF

Strategy and Application of Phased Context Teaching-Learning for Helping Physics Learning (물리 학습을 돕기 위한 단계적 상황 교수·학습 전략 및 적용)

  • Song, Youngwook;Choi, Hyukjoon
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.333-342
    • /
    • 2015
  • The purpose of this research was to investigate the effect of physics learning through the teaching-learning strategy of phased context in introductory physics classes. The participants in the study included 35 university freshmen. The teaching-learning strategy of phased context were developed by idealizing, extending and comparing contexts which were then applied in introductory physics classes : six hour classes about straight line motion, two-dimensional motion and Newton's laws of motion. The effects of the physics learning were then analyzed by the FCI (Force Concept Inventory) and MPEX (Maryland Survey on Physics Expectation) questionnaires. The results showed that the teaching-learning strategy of phased context helped change the force concept and did not change the belief about physics learning. Finally, based on the results of the study, we discuss possible educational implications for phased context in introductory physics classes.

  • PDF

U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids

  • Tu, Hong;Yuan, Guoyuan;Zhao, Changsong;Liu, Jun;Li, Feize;Yang, Jijun;Liao, Jiali;Yang, Yuanyou;Liu, Ning
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1322-1332
    • /
    • 2019
  • In this paper, we systematically investigated the influence of some selected ligands on the U-phosphate precipitation induced by soil bacteria. These organics are widely ranging from acetate, lactate, salicylate and citrate to oxalate. The results revealed that uranium could be biomineralized on bacteria as $UO_2HPO_4{\cdot}4H_2O$ or $(UO_2)_3(PO_4)_2{\cdot}4H_2O$. The influence of organic ligands on the biomineralization had clear-cut correlations with its complexation abilities to uranyl. It was clearly found that the U-phosphate biomineralization was affected noticeably by the strong ligands (oxalate and citrate). Further study discovered that when the organic ligands were uncompetitive with biotic $PO_4^{3-}$ for uranyl, the transformation of uranyl species from ${\beta}-UO_2(OH)_2$ colloidal particles to free $UO_2^{2+}$-ligands ions could facilitate the U-phosphate biomineralization. However, when the organic ligands competed with biotic $PO_4^{3-}$ for uranyl, the U-phosphate biomineralization were inhibited. Our results highlight the importance of complex interactions of strong organic ligands with uranyl during the bacterial precipitation of U-P compounds and thus for the mobilization and immobilization of radio-nuclides in the nature.

Radiation stability and radiolysis mechanism of hydroxyurea in HNO3 solution: Alpha, beta, and gamma irradiations

  • Yilin Qin;Wei Liao;Tu Lan;Fengzhen Li;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4660-4670
    • /
    • 2022
  • Hydroxyurea (HU) is a novel salt-free reductant used potentially for the separation of U/Pu in the advanced PUREX process. In this work, the radiation stability of HU were systematically investigated in solution by examining the effects of the type of rays (α, β, and γ irradiations), the absorbed dose (10-50 kGy), and the HNO3 concentration (0-3 mol L-1). The influence degree on HU radiolysis rates followed the order of the absorbed dose > the ray type > the HNO3 concentration, but the latter two had moderate effects on HU radiolysis products where NH4+ and NO2- were found to be the most abundant ones, suggesting that the differences of α, β, and γ rays should be considered in the study of irradiation effects. The radiolysis mechanism was explored using density functional theory (DFT) calculations, and it proposed the dominant radiolysis paths of HU, indicating that the radiolysis of HU was mainly a free radical reaction among ·H, eaq-, H2O, intermediates, and the radiolytic free radical fragments of HU. The results reported here provide valuable insights into the mechanistic understanding of HU radiolysis under α, β, and γ irradiations and reliable data support for the application of HU in the reprocessing of spent fuel.

John Tyndall(1820-1894), Who Brought Physics and the Public Together

  • Song, Jin-Woong;Cho, Sook-Kyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.4
    • /
    • pp.419-429
    • /
    • 2003
  • The developments of science education until the middle of the 20th century were often driven by personal ideas and achievements of some influential individual scientists (e.g. T. H. Huxley, H. E. Armstrong. L. Hogben, J. Conant). while that of the 2nd half of the 20th century can be characterized as collective efforts through various research grou ps of science educators (e.g. PSSC, HPP, Nuffield, SATIS). In this respect, John Tyndall(1820-1894), a physicist of the Victorian England best known as Tyndall's Effect, can be considered as one of the great scientists who made a big influence on science teaching and the popularization of science before science secured its place in school curricula. Tyndall worked as a research scientist at the Royal Institution of London, where various lectures and demonstrations of physical sciences were regularly performed for general public, and he was particularly famous for his fascinating physics demonstrations. In this study, we summarize his activities and achievements as a teacher as well as a popularizer of physics, illustrate some of his famous demonstrations and his ideas concerning physics teaching and discuss their implications to today's physics education.

Developing a Web-Based System for Testing Students' Physics Misconceptions (WEBSYSTEM) and its Implementation

  • Kim, Min-Kee;Choi, Jae-Hyeok;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.105-119
    • /
    • 2007
  • Several studies have attempted to test students' misconceptions of physics and to provide teaching strategies in order to repair them. The results from these studies have revealed that the diagnosis of students' misconception is crucial, although they often failed to grasp the practice of its implementation. In terms of being a type of methodology for science education, the Internet allows large-scale surveys and investigations to be carried out in a relatively short period of time. This paper reports the results of the development, implementation, and evaluation of a WEb-based SYStem for TEsting students' Misconceptions in physics (WEBSYSTEM) aimed at three groups (science educational researchers who study students' physics conceptions using the system as a detector, school science teachers who practice it as an instructional material, and students who benefit from it for their self-directed learning). The web-based testing system is based on a review of the instructional development strategies of ADDIE (Gustafson, Branch, 2002; Rha, Chung, 2001). Results showed that WEBSYSTEM could work effectively as a multi-purposed tool for the three target groups with a further partial revision, providing educational researchers with resourceful data to study students' misconceptions in physics. Issues of administrative strategies, reexamination of questionnaires, and international collaboration via WEBSYSTEM are discussed.

A Magneto-optical Trap Below a Dielectric Coated Mirror Surface

  • Yu, Hoon;Lee, Lim;Lee, Kyung-Hyun;Kim, Jung-Bog
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • A Magneto-Optical Trap (MOT) for $^{87}Rb$ atoms near the surface of a dielectric coated mirror at the top of a small $20{\times}25{\times}40\;mm^3$ cell has been observed. Two beams of $3.3\;mW/cm^2$ were used for optical cooling and an anti-Helmholtz magnetic field with a spatial gradient of 9.1 G/cm was used for magnetic trapping. The thickness of the mirror coated on a cover glass was less than $100{\mu}m$. The mirror covered the top of a cell and the atom-chip was located outside the vacuum in order to exploit the long life time of the mirror and easy operation of the chip. The trapping position was found 5 mm beneath the mirror surface. The number of trapped atoms was roughly $3{\times}10^7$ atoms and the temperature was approximately a few tens mK. In this paper, we describe the construction of the mirror-MOT in detail.

DEVELOPMENT OF VIRTUAL PLAYGROUND SYSTEM BY MARKERLESS AUGUMENTED REALITY AND PHYSICS ENGINE

  • Takahashi, Masafumi;Miyata, Kazunori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.834-837
    • /
    • 2009
  • Augmented Reality (AR) is a useful technology for various industrial systems. This paper suggests a new playground system which uses markerless AR technology. We developed a virtual playground system that can learn physics and kinematics from the physical play of people. The virtual playground is a space in which real scenes and CG are mixed. As for the CG objects, physics of the real world is used. This is realized by a physics engine. Therefore it is necessary to analyze information from cameras, so that CG reflects the real world. Various games options are possible using real world images and physics simulation in the virtual playground. We think that the system is effective for education. Because CG behaves according to physics simulation, users can learn physics and kinematics from the system. We think that the system can take its place in the field of education through entertainment.

  • PDF