Browse > Article
http://dx.doi.org/10.1016/j.net.2019.03.002

U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids  

Tu, Hong (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yuan, Guoyuan (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Zhao, Changsong (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liu, Jun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Li, Feize (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yang, Jijun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liao, Jiali (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yang, Yuanyou (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liu, Ning (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Publication Information
Nuclear Engineering and Technology / v.51, no.5, 2019 , pp. 1322-1332 More about this Journal
Abstract
In this paper, we systematically investigated the influence of some selected ligands on the U-phosphate precipitation induced by soil bacteria. These organics are widely ranging from acetate, lactate, salicylate and citrate to oxalate. The results revealed that uranium could be biomineralized on bacteria as $UO_2HPO_4{\cdot}4H_2O$ or $(UO_2)_3(PO_4)_2{\cdot}4H_2O$. The influence of organic ligands on the biomineralization had clear-cut correlations with its complexation abilities to uranyl. It was clearly found that the U-phosphate biomineralization was affected noticeably by the strong ligands (oxalate and citrate). Further study discovered that when the organic ligands were uncompetitive with biotic $PO_4^{3-}$ for uranyl, the transformation of uranyl species from ${\beta}-UO_2(OH)_2$ colloidal particles to free $UO_2^{2+}$-ligands ions could facilitate the U-phosphate biomineralization. However, when the organic ligands competed with biotic $PO_4^{3-}$ for uranyl, the U-phosphate biomineralization were inhibited. Our results highlight the importance of complex interactions of strong organic ligands with uranyl during the bacterial precipitation of U-P compounds and thus for the mobilization and immobilization of radio-nuclides in the nature.
Keywords
Uranium contamination; Bioremediation; Complexation; Organic ligands;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Ohnuki, T. Ozaki, T. Yoshida, et al., Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae, Geochem. Cosmochim. Acta 69 (2005) 5307-5316, 2005/11/15.   DOI
2 L.E. Macaskie, C.J. Hewitt, J.A. Shearer, et al., Biomass production for the removal of heavy metals from aqueous solutions at low pH using growth-decoupled cells of a Citrobacter sp, Int. Biodeterior. Biodegrad. 35 (1995) 73-92, 1995/01/01.   DOI
3 P. Yong, L.E. Macaskie, Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4, J. Appl. Chem. Biotechnol. 63 (1995) 101-108.   DOI
4 M. Paterson-Beedle, J.E. Readman, J.A. Hriljac, et al., Biorecovery of uranium from aqueous solutions at the expense of phytic acid, Hydrometallurgy 104 (2010) 524-528, 2010/10/01.   DOI
5 X. Liang, L. Csetenyi, G.M. Gadd, Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates, Appl. Microbiol. Biotechnol. 100 (2016 June 01) 5141-5151.   DOI
6 F. Morcillo, M.T. Gonzalez-Mu-noz, T. Reitz, et al., Biosorption and biomineralization of U(VI) by the marine bacterium idiomarina loihiensis MAH1: effect of background electrolyte and pH, PLoS One 9 (2014), e91305.   DOI
7 C.M. Hansel, S.G. Benner, J. Neiss, et al., Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochem. Cosmochim. Acta 67 (2003) 2977-2992, 2003/08/15.   DOI
8 M. Martinez-Lara, J.A. Barea-Aranda, L.-M. Real, et al., Interaction of aniline and benzidine with layered solids Mn+(UO2XO4) n - z H2O[M = H3O+, Cu2+, VO2+, Fe2+; X = P, As], J. Inclusion Phenom. Mol. Recognit. Chem. 9 (1990) 287-299, 1990/12/01.   DOI
9 R. Pozas-Tormo, L. Moreno-Real, M. Martinez-Lara, et al., Layered metal uranyl phosphates. Retention of divalent ions by amine intercalates of uranyl phosphates, Can. J. Chem. 64 (1986) 30-34, 1986/01/01.   DOI
10 A. Sanding, J. Bruno, The solubility of (UO2)3(PO4)2 ${\cdot}$ 4H2O(s) and the formation of U(VI) phosphate complexes: their influence in uranium speciation in natural waters, Geochem. Cosmochim. Acta 56 (1992) 4135-4145, 1992/12/01.   DOI
11 D.M. Wellman, K.M. Gunderson, J.P. Icenhower, et al., Dissolution kinetics of synthetic and natural meta-autunite minerals, X3-n(n)+ [(UO2)(PO4)]2 ${\cdot}$ xH2O, under acidic conditions, Geochem. Geophys. Geosyst. 8 (2007) (n/a-n/a).
12 T. Ohnuki, N. Kozai, T. Ozaki, et al., Effects of organic acids on biotransformation of acinides. Nuclear energy and the environment, in: ACS Symposium Series, vol. 1046, American Chemical Society, 2010, pp. 333-348.
13 T. Ohnuki, N. Kozai, M. Samadfam, et al., The formation of autunite (Ca(UO2) 2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite, Chem. Geol. 211 (2004) 1-14, 2004/11/08.   DOI
14 M. Wazne, G.P. Korfiatis, X. Meng, Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide, Environ. Sci. Technol. 37 (2003) 3619-3624, 2003/08/01.   DOI
15 R.J. Murphy, J.J. Lenhart, B.D. Honeyman, The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter, Colloids Surf., A 157 (1999) 47-62, 1999/10/30.   DOI
16 D.D. Schnaars, G. Wu, T.W. Hayton, Reduction of pentavalent uranyl to U(IV) facilitated by oxo functionalization, J. Am. Chem. Soc. 131 (2009) 17532-17533, 2009/12/09.   DOI
17 Y. Suzuki, T. Nankawa, T. Yoshida, et al., Reduction behavior of uranium in the presence of citric acid, Radiochim. Acta (2006) 579.
18 F. Malekzadeh, A. Farazmand, H. Ghafourian, et al., Uranium accumulation by a bacterium isolated from electroplating effluent, World J. Microbiol. Biotechnol. 18 (2002) 295-300.   DOI
19 M. Ghasemi, A.R. Keshtkar, R. Dabbagh, et al., Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling, J. Hazard Mater. 189 (2011 May 15) 141-149.   DOI
20 L. Newsome, K. Morris, J.R. Lloyd, The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chem. Geol. 363 (2014 Jan 10) 164-184.   DOI
21 C.S. Zhao, X.L. Li, C.C. Ding, et al., Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp dwc-1 as investigated by FTIR, TEM and XPS, J. Radioanal. Nucl. Chem. 310 (2016 Oct) 165-175.   DOI
22 M.I. Boyanov, K.E. Fletcher, M.J. Kwon, et al., Solution and microbial controls on the formation of reduced U(IV) species, Environ. Sci. Technol. 45 (2011 Oct 1) 8336-8344.
23 R. Bernier-Latmani, H. Veeramani, E.D. Vecchia, et al., Non-uraninite products of microbial U(VI) reduction, Environ. Sci. Technol. 44 (2010 Dec 15) 9456-9462.   DOI
24 R.A. Crane, M. Dickinson, I.C. Popescu, et al., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res. 45 (2011 Apr) 2931-2942.   DOI
25 A. Francis, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282.   DOI
26 G.W. Strandberg, S.E. Shumate, J.R. Parrott, Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol. 41 (1981) 237-245.   DOI
27 W. Gao, A.J. Francis, Reduction of uranium (VI) to uranium (IV) by Clostridia, Appl. Environ. Microbiol. 74 (2008) 4580-4584.   DOI
28 B. Gu, W.-M. Wu, M.A. Ginder-Vogel, et al., Bioreduction of uranium in a contaminated soil column, Environ. Sci. Technol. 39 (2005) 4841-4847.   DOI
29 X. Liang, S. Hillier, H. Pendlowski, et al., Uranium phosphate biomineralization by fungi, Environ. Microbiol. 17 (2015) 2064-2075.   DOI
30 C.S. Griggs, P.S. Barber, S.P. Kelley, et al., Biomimetic mineralization of uranium by metabolically-inactive shrimp shell, Cryst. Growth Des. 14 (2014 Dec) 6172-6176.   DOI
31 T. Sousa, A.-P. Chung, A. Pereira, et al., Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes, Metall 5 (2013) 390-397.   DOI
32 S. Choudhary, P. Sar, Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste, J. Hazard Mater. 186 (2011 Feb 15) 336-343.   DOI
33 S. Sowmya, P.D. Rekha, A.B. Arun, Uranium(VI) bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp YU-SS-SB-29 isolated from a high natural background radiation site, Int. Biodeterior. Biodegrad. 94 (2014 Oct) 134-140.   DOI
34 A. Singh, K.-U. Ulrich, D.E. Giammar, Impact of phosphate on U(VI) immobilization in the presence of goethite, Geochem. Cosmochim. Acta 74 (2010) 6324-6343, 2010/11/15.   DOI
35 M.C. Yung, Y. Jiao, Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus, Appl. Environ. Microbiol. 80 (2014) 4795-4804, 2014 August 15.   DOI
36 R. Wufuer, Y. Wei, Q. Lin, et al., Chapter four - uranium bioreduction and biomineralization, in: S. Sariaslani, G.M. Gadd (Eds.), Adv. Appl. Microbiol, vol. 101, Academic Press, 2017, pp. 137-168.
37 M.J. Beazley, R.J. Martinez, P.A. Sobecky, et al., Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions, Geomicrobiol. J. 26 (2009) 431-441, 2009/09/24.   DOI
38 M.J. Beazley, R.J. Martinez, S.M. Webb, et al., The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils, Geochem. Cosmochim. Acta 75 (2011) 5648-5663, 2011/10/01.   DOI
39 L. Macaskie, R. Empson, A. Cheetham, et al., Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4, Science 257 (1992) 782-784.   DOI
40 K.R. Salome, M.J. Beazley, S.M. Webb, et al., Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils, Geochem. Cosmochim. Acta 197 (2017) 27-42, 2017/01/15.   DOI
41 R.M. Harper, C. Kantar, Uranium A2 - jorgensen, sven erik, in: B.D. Fath (Ed.), Encyclopedia of Ecology, Academic Press, Oxford, 2008, pp. 3662-3665.
42 Z. Zheng, J. Wan, X. Song, et al., Sodium meta-autunite colloids: synthesis, characterization, and stability, Colloids Surf., A 274 (2006) 48-55, 2006/02/15.   DOI
43 M. Markovic, N. Pavkovic, Solubility and equilibrium constants of uranyl(2+) in phosphate solutions, Chemischer Informationsdienst 14 (1983) 978-982.
44 C.A. Blake, C.F. Coleman, K.B. Brown, et al., Studies in the carbonate-uranium system, J. Am. Chem. Soc. 78 (1956) 5978-5983, 1956/12/01.   DOI
45 M. Markovic, N. Pavkovic, N.D. Pavkovic, Precipitation of NH4UO2PO4.3H2O - solubility and structural comparison with alkali uranyl(2+) phosphates, J. Res. Natl. Bur. Stand. 93 (1988 Jul-Aug) 557-563.   DOI
46 G.M. Gadd, M. Fomina, Uranium and fungi, Geomicrobiol. J. 28 (2011) 471-482, 2011/06/01.   DOI
47 A.J. Francis, C.J. Dodge, Bioreduction of uranium(VI) complexed with citric acid by clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282, 2008/11/15.   DOI
48 J.M. Tobin, D.G. Cooper, R.J. Neufeld, Influence of anions on metal adsorption by Rhizopus arrhizus biomass, Biotechnol. Bioeng. 30 (1987) 882-886.   DOI
49 M.E. Treen-Sears, B. Volesky, R.J. Neufeld, Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent, Biotechnol. Bioeng. 26 (1984) 1323-1329.   DOI
50 R. Ganesh, K.G. Robinson, L. Chu, et al., Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal, Water Res. 33 (1999) 3447-3458, 1999/11/01.   DOI
51 H. Tu, T. Lan, G. Yuan, et al., The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2, J. Environ. Radioact. 197 (2019) 23-29, 2019/02/01.   DOI
52 C. Ding, W. Cheng, Z. Jin, et al., Plasma synthesis of ${\beta}$-cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions, J. Mol. Liq. 207 (2015) 224-230.   DOI
53 T. Lan, C. Ding, J. Liao, et al., Biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2 isolated from soil, Nucl. Sci. Tech. 26 (2015) 35-45.
54 X. Li, C. Ding, J. Liao, et al., Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: a macroscopic and spectroscopic study, J. Environ. Sci. 53 (2017) 9-15, 2017/03/01.   DOI
55 Y.Z. Yousif, F.J.M. Al-Imarah, Spectrophotometric study of the effect of substitution on the thermodynamic stability of the 1.1 complexes of the dioxouranium(II) ion with mono-substituted salicylic acids in aqueous media, Transition Met. Chem. 14 (1989 1989/04/01) 123-126.   DOI
56 D.L. Parkhurst, C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3: a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Report. Reston, VA, 2013, 6-A43.
57 D. Kinniburgh, D.M. Cooper, PhreePlot: Creating Graphical Output with PHREEQC, Centre for Ecology and Hydrology, Wallingford, 2011.
58 R. Lundqvist, J.F. Lu, I. Svantesson, et al., Hydrophilic complexes of the actinides. III. Lactates of Am(3+), Eu(3+), U(4+) and UO2(2+), Acta Chem. Scand. 38a (1984) 501-512.   DOI
59 J. Havel, J. Soto-Guerrero, P. Lubal, Spectrophotometric study of uranyl-oxalate complexation in solution, Polyhedron 21 (2002) 1411-1420, 2002/06/15.   DOI
60 G. Leturcq, S. Costenoble, S. Grandjean (Eds.), Uranyl Oxalate Solubility, Atalante, 2008.
61 A.J. Locock, P.C. Burns, M.J.M. Duke, et al., Monovalent cations in structures of the meta-autunite group, Can. Mineral. 42 (2004) 973-996.   DOI
62 E.H. Bailey, J.F.W. Mosselmans, P.F. Schofield, Uranyl acetate speciation in aqueous solutions-an XAS study between $25^{\circ}C$ and $250^{\circ}C$, Geochem. Cosmochim. Acta 68 (2004) 1711-1722.   DOI
63 K.S. Rajan, A.E. Martell, Equilibrium studies of uranyl complexes. III. Interaction of uranyl ion with citric acid, Inorg. Chem. 4 (1965) 462-469.   DOI
64 L. B.I, J. B.E, J. A.P, ChemInform abstract: CRYSTALLOGRAPHIC DATA ON AMMONIUM URANYL PHOSPHATE TRIHYDRATE, Chemischer Informationsdienst 7 (1976).
65 N. PavkoviC, M. MarkoviC, Precipitation and identification of uranyl(2+) salts in diphosphoric acid, Radiochim. Acta (1983) 127.
66 B. Morosin, Hydrogen uranyl phosphate tetrahydrate, a hydrogen-ion solid electrolyte, Acta Crystallogr. B 34 (1978) 3732-3734.   DOI
67 A. Fitch, M. Cole, The structure of KUO 2 PO 4. 3D 2 O refined from neutron and synchrotron-radiation powder diffraction data, Mater. Res. Bull. 26 (1991) 407-414.   DOI
68 F. Weigel, G. Hoffmann, The phosphates and arsenates of hexavalent actinides. Part I. Uranium, J. Less Common Met. 44 (1976) 99-123.   DOI
69 U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation, Nat. Nanotechnol. 6 (2011) 534, 08/28/online.   DOI
70 D. Gorman-Lewis, P.C. Burns, J.B. Fein, Review of uranyl mineral solubility measurements, J. Chem. Thermodyn. 40 (2008) 335-352, 2008/03/01.   DOI
71 R.A.P. Thomas, L.E. Macaskie, Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol. 30 (1996) 2371-2375, 1996/06/01.   DOI